Skip to main content
Log in

Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic

  • Published:
Ukrainian Mathematical Journal Aims and scope

We obtain results on the local behavior of open discrete mappings \( f:D \to {\mathbb{R}^n} \), n ≥ 2, that satisfy certain conditions related to the distortion of capacities of condensers. It is shown that, in an infinitesimal neighborhood of zero, the indicated mapping cannot grow faster than an integral of a special type that corresponds to the distortion of the capacity under this mapping, which is an analog of the well-known Ikoma growth estimate proved for quasiconformal mappings of the unit ball into itself and of the classic Schwartz lemma for analytic functions. For mappings of the indicated type, we also obtain an analog of the well-known Liouville theorem for analytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Kruglikov, “Capacities of condensers and space mappings quasiconformal in the mean,” Mat. Sb., 130, No. 2, 185–206 (1986).

    MathSciNet  Google Scholar 

  2. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    MATH  Google Scholar 

  3. R. R. Salimov and E. A. Sevost’yanov, “ACL and differentiability of open discrete ring (p, Q)-mappings,” Mat. Stud., 35, No. 1, 28–36 (2010).

    MathSciNet  Google Scholar 

  4. K. Ikoma, “On the distortion and correspondence under quasiconformal mappings in space,” Nagoya Math. J., 25, 175–203 (1965).

    MathSciNet  Google Scholar 

  5. O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 465, 1–13 (1970).

    Google Scholar 

  6. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  7. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  8. S. Rickman, “Quasiregular mappings,” Results Math. Relat. Areas, 26, No. 3 (1993).

  9. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Toronto (1966).

    MATH  Google Scholar 

  10. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York (1973).

    MATH  Google Scholar 

  11. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  12. A. Goldberg, “Differential properties of (α, Q)-homeomorphisms,” in: Proceedings of the 6th International ISAAC Congress “Further Progress in Analysis,” World Scientific (2009), pp. 218–228.

  13. F. Gehring, “Lipschitz mappings and p-capacity of rings in n-space,” Ann. Math. Stud., 66, 175–193 (1971).

    MathSciNet  Google Scholar 

  14. E. A. Sevost’yanov, “On the integral characterization of some generalized quasiregular mappings and the significance of the conditions of divergence of integrals in the geometric theory of functions” Ukr. Mat. Zh., 61, No. 10, 1367–1380 (2009); English translation: Ukr. Math. J., 61, No. 10, 1610–1623 (2009).

    MATH  Google Scholar 

  15. T. Ransford, Potential Theory in the Complex Plane, Cambridge University, Cambridge (1995).

    Book  MATH  Google Scholar 

  16. S. Saks, Theory of the Integral, PWN, Warsaw (1937).

    Google Scholar 

  17. K. Kuratowski, Topology, Vol. 2, Academic Press, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 10, pp. 1368–1380, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimov, R.R., Sevost’yanov, E.A. Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic. Ukr Math J 63, 1551–1565 (2012). https://doi.org/10.1007/s11253-012-0600-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0600-x

Keywords

Navigation