Skip to main content
Log in

On the sets of branch points of mappings more general than quasiregular

  • Published:
Ukrainian Mathematical Journal Aims and scope

It is shown that if a point x 0 ∊ ℝn, n ≥ 3, is an essential isolated singularity of an open discrete Q-mapping f : D\( \overline {\mathbb {R}^n} \), B f is the set of branch points of f in D; and a point z 0\( \overline {\mathbb {R}^n} \) is an asymptotic limit of f at the point x 0; then, for any neighborhood U containing the point x 0; the point z 0\( \overline {f\left( {B_f \cap U} \right)} \) provided that the function Q has either a finite mean oscillation at the point x 0 or a logarithmic singularity whose order does not exceed n − 1: Moreover, for n ≥ 2; under the indicated conditions imposed on the function Q; every point of the set \( \overline {\mathbb {R}^n} \)\ f(D) is an asymptotic limit of f at the point x 0. For n ≥ 3, the following relation is true: \( \overline {\mathbb{R}^n } \backslash f\left( D \right) \subset \overline {f\,B_f } \) . In addition, if \( \infty \notin f\left( D \right) \), then the set f B f is infinite and \( x_0 \in \overline {B_f } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York (1973).

    MATH  Google Scholar 

  3. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  4. Yu. F. Strugov, “Compactness of the classes of mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 243, No. 4, 859–861 (1978).

    MathSciNet  Google Scholar 

  5. O. Martio, S. Rickman, and J. Väisälä, “Topological and metric properties of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 488, 1–31 (1971).

    Google Scholar 

  6. S. Rickman, “Quasiregular mappings,” Results Math. Relat. Areas, 3, No. 26 (1993).

  7. E. A. Sevost’yanov, “Liouville, Picard, and Sokhotskii theorems for ring mappings,” Ukr. Mat. Vestn., 5, No. 3, 366–381 (2008).

    MathSciNet  Google Scholar 

  8. V. A. Zorich, “Lavrent’ev theorem on the quasiconformal mappings of a space,” Mat. Sb., 116, No. 3, 415–433 (1967).

    Google Scholar 

  9. S. Agard and A. Marden, “A removable singularity theorem for local homeomorphisms,” Indiana Math. J., 20, 455–461 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lect. Notes Math., 229, Springer, Berlin (1971).

  11. G. T. Whyburn, Analytic Topology, American Mathematical Society, Rhode Island (1942).

    MATH  Google Scholar 

  12. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MATH  MathSciNet  Google Scholar 

  13. J. Heinonen and P. Koskela, “Sobolev mappings with integrable dilatations,” Arch. Rat. Mech. Anal., 125, 81–97 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  15. J. J. Manfredi and E. Villamor, “An extension of Reshetnyak’s theorem,” Indiana Univ. Math. J., 47, No. 3, 1131–1145 (1998).

    MATH  MathSciNet  Google Scholar 

  16. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 2, pp. 215–230, February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevost’yanov, E.A. On the sets of branch points of mappings more general than quasiregular. Ukr Math J 62, 241–258 (2010). https://doi.org/10.1007/s11253-010-0348-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0348-0

Keywords

Navigation