Skip to main content
Log in

On one result of J. Bourgain

  • Published:
Ukrainian Mathematical Journal Aims and scope

In a linear space of dimension n over the field \( {\mathbb{F}_2} \), we construct a set A of given density such that the Fourier transform of A is large on a large set, and the intersection of A with any subspace of small dimension is small. The results obtained show, in a certain sense, the sharpness of one theorem of J. Bourgain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Behrend, “On sets of integers which contain no three terms in arithmetic progression,” Proc. Nat. Acad. Sci., 23, 331–332 (1946).

    Article  MathSciNet  Google Scholar 

  2. P. Erdös and P. Turán, “On some sequences of integers,” J. London Math. Soc., 11, 261–264 (1936).

    Article  MATH  Google Scholar 

  3. P. Frankl, G. Graham, and V. Rödl, “On sets of abelian groups with no 3-term arithmetic progressions,” J. Combin. Theory, 45, Ser. A, 157–161 (1987).

    Article  MATH  Google Scholar 

  4. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton, New York (1981).

    MATH  Google Scholar 

  5. H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions,” J. Anal. Math., 31, 204–256 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Furstenberg and Y. Katznelson, “An ergodic Szemerédi theorem for commuting transformations,” J. Anal. Math., 34, 275–291 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Furstenberg, D. Ornstein, and Y. Katznelson, “The ergodic theoretical proof of Szemerédi’s theorem,” Bull. Amer. Math. Soc., 7, No. 3, 527–552 (1982).

    Article  MathSciNet  Google Scholar 

  8. W. T. Gowers, “Rough structure and classification,” in: Geom. Funct. Anal., Special Volume GAFA2000 “Visions in Mathematics”, Tel Aviv, Part I, 79–117 (1999).

  9. W. T. Gowers, “A new proof of Szemerédi’s theorem for arithmetic progressions of length four,” Geom. Funct. Anal., 8, 529–551 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. W. T. Gowers, “A new proof of Szemerédi’s theorem,” Geom. Funct. Anal., 11, 465–588 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. F. Lev, “Progressions-free sets in finite abelian groups,” J. Number Theory, 104, No. 1, 162–169 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Meshulam, “On subsets of finite abelian groups with no 3-term arithmetic progressions,” J. Combin. Theory, 71, Ser. A, 168–172 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Springer, New York (1996).

    Google Scholar 

  14. R. A. Rankin, “Sets of integers containing not more than a given number of terms in arithmetic progression,” Proc. Roy. Soc. Edinburgh A, 65, No. 4, 332–344 (1961).

    MathSciNet  Google Scholar 

  15. K. F. Roth, “On certain sets of integers,” J. London Math. Soc., 28, 245–252 (1953).

    Article  MathSciNet  Google Scholar 

  16. M.-C. Chang, “A polynomial bound in Freiman’s theorem,” Duke Math. J., 113, No. 3, 399–419 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Bernstein, “Sur une modification de l’inéqualité de Tchebichef,” Ann. Sci. Inst. Sav. Ukr., Sect. Math. I (1924).

  18. J. Spencer, “Six standard deviations suffice,” Trans. Amer. Math. Soc., 289, 679–706 (1985).

    MATH  MathSciNet  Google Scholar 

  19. B. Green, “Arithmetic progressions in sumsets,” Geom. Funct. Anal., 12, No. 3, 584–597 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Green, “A Szemerédi-type regularity lemma in abelian groups,” Geom. Funct. Anal., 15, No. 2, 340–376 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Green, “Some constructions in the inverse spectral theory of cyclic groups,” Combin. Probab. Comput., 12, No. 2, 127–138 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Green, “Spectral structure of sets of integers,” in: Fourier Analysis and Convexity (Applied and Numerical Harmonic Analysis) (Survey Article, Milan 2001), Birkhäuser, Boston (2004), pp. 83–96.

  23. B. Green, “Structure theory of set addition,” in: ICMS Instructional Conference in Combinatorial Aspects of Mathematical Analysis (Edinburgh, March 25–April 5, 2002) (2002), pp. 1–27.

  24. B. Green, “Finite field model in additive combinatorics,” Surveys in Combinatorics, London Mathematical Society Lecture Notes, 329, 1–29 (2005).

    Google Scholar 

  25. B. Green and T. Tao, “An inverse theorem for the Gowers U3-norm, with applications,” Proceedings of the Edinburgh Mathematical Society, Ser. 2, 51, No. 1, 73–153 (2008).

    MATH  MathSciNet  Google Scholar 

  26. B. Green and T. Tao, “New bounds for Szemerédi’s theorem, II: A new bound for r 4(N),” in: Analytic Number Theory, Cambridge University, Cambridge (2009), pp. 180–204.

  27. W. Rudin, Fourier Analysis on Groups, Wiley, New York (1990)

    MATH  Google Scholar 

  28. W. Rudin, “Trigonometric series with gaps,” J. Math. Mech., 9, 203–227 (1960).

    MATH  MathSciNet  Google Scholar 

  29. I. Ruzsa, “Arithmetic progressions in sumsets,” Acta Arithm., 60, No. 2, 191–202 (1991).

    MATH  MathSciNet  Google Scholar 

  30. T. Sanders, “Appendix to ‘Roth’s theorem on progressions revisited’ by J. Bourgain,” J. Anal. Math., 104, No. 1, 193–206 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Szemerédi, “On sets of integers containing no k elements in arithmetic progression,” Acta Arithm., 27, 299–345 (1975).

    Google Scholar 

  32. T. Tao and V. Vu, Additive Combinatorics, Cambridge University, Cambridge (2006).

    Book  MATH  Google Scholar 

  33. T. Tao, Lecture Notes 5 for Math 254A. UCLA 2003; available at http://math.ucla.edu/~tao/254a.1.03w/notes5.dvi.

  34. J. Bourgain, “On triples in arithmetic progression,” Geom. Funct. Anal., 9, 968–984 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Bourgain, Roth’s Theorem on Progressions Revisited, Preprint (2007).

  36. G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York (1939).

    Google Scholar 

  37. T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, Wiley, New York (1990).

    MATH  Google Scholar 

  38. P. Turan, “Eine Extremalaufgabe aus der Graphentheorie,” Mat. Fiz. Lapok., 48, 436–452 (1941).

    MATH  MathSciNet  Google Scholar 

  39. B. Bollobás, “Ket fuggelten kort nem tartalmazo grafokrol,” Mat. Lapok, 14, 311–321 (1963).

    MATH  MathSciNet  Google Scholar 

  40. B. Bollobás, Extremal Graph Theory, Academic Press, New York (1978).

    MATH  Google Scholar 

  41. R. D. Dutton and R. C. Brigham, “Edges in graphs with large girth,” Graphs Combinatorics, 7, 315–321 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  42. I. D. Shkredov, “On sets of large trigonometric sums,” Dokl. Akad. Nauk SSSR, 411, No. 4, 455–459 (2006).

    MathSciNet  Google Scholar 

  43. I. D. Shkredov, “On sets of large trigonometric sums,” Izv. Ros. Akad. Nauk, Ser. Mat., 72, No. 1, 161–182 (2008).

    MathSciNet  Google Scholar 

  44. I. D. Shkredov, “Some examples of sets of large trigonometric sums,” Mat. Sb., 198, No. 12, 105–140 (2007).

    MathSciNet  Google Scholar 

  45. I. D. Shkredov, “On sumsets of dissociated sets,” Online J. Anal. Combinatorics, 4, 1–27 (2009).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 3, pp. 332–368, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konyagin, S.V., Shkredov, I.D. On one result of J. Bourgain. Ukr Math J 62, 380–419 (2010). https://doi.org/10.1007/s11253-010-0361-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0361-3

Keywords

Navigation