Skip to main content
Log in

On the convergence of positive increasing functions to infinity

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the conditions of convergence to infinity for some classes of functions extending the well-known class of regularly varying (RV) functions, such as, e.g., O-regularly varying (ORV) functions or positive increasing (PI) functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Aljančić and D. Arandelović, “O-regularly varying functions,” Publ. Inst. Math. (Beograd) (N.S.), 22(36), 5–22 (1977).

    MathSciNet  Google Scholar 

  2. D. Arandelović, “O-regular variation and uniform convergence,” Publ. Inst. Math. (Beograd) (N.S.), 48(62), 25–40 (1990).

    MathSciNet  Google Scholar 

  3. V. G. Avakumović, “Über einen O-Inversionssatz,” Bull. Int. Acad. Youg. Sci., 29–30, 107–117 (1936).

    Google Scholar 

  4. N. K. Bari and S. B. Stechkin, “Best approximation and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obsch., 5, 483–522 (1956).

    MATH  Google Scholar 

  5. N. H. Bingham and C. M. Goldie, “Extensions of regular variation, I, II,” Proc. London Math. Soc., 44, 473–534 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge (1987).

    MATH  Google Scholar 

  7. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “Properties of a subclass of Avakumović functions and their generalized inverses,” Ukr. Math. J., 54, No. 2, 179–206 (2002).

    Article  MathSciNet  Google Scholar 

  8. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “Some properties of asymptotically quasiinverse functions and their applications. I,” Theory Probab. Math. Statist., 70, 11–28 (2005).

    Article  MathSciNet  Google Scholar 

  9. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “On some properties of asymptotically quasiinverse functions and their applications. II,” Theory Probab. Math. Statist., 71, 37–52 (2005).

    Article  MathSciNet  Google Scholar 

  10. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “PRV property and the asymptotic behavior of solutions of stochastic differential equations,” Theory Stochast. Proc., 11(27), 42–57 (2005).

    MathSciNet  Google Scholar 

  11. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “On some properties of asymptotically quasiinverse functions,” Theory Probab. Math. Statist., 77, 15–30 (2008).

    MathSciNet  Google Scholar 

  12. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “PRV property and the φ-asymptotic behavior of solutions of stochastic differential equations,” Liet. Mat. Rink., 47, No. 4, 445–465 (2007).

    MathSciNet  Google Scholar 

  13. D. Djurčić and A. Torgašev, “Strong asymptotic equivalence and inversion of functions in the class K,” J. Math. Anal. Appl., 255, 383–390 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Feller, “One-sided analogues of Karamata’s regular variation,” L’Enseignement Math., 15, 107–121 (1969).

    MathSciNet  MATH  Google Scholar 

  15. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin (1972).

    MATH  Google Scholar 

  16. W. Greub, Linear Algebra, 4th ed., Springer, Berlin (1975).

    MATH  Google Scholar 

  17. L. de Haan and U. Stadtmüller, “Dominated variation and related concepts and Tauberian theorems for Laplace transformations,” J. Math. Anal. Appl., 108, 344–365 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Karamata, “Sur un mode de croissance régulière des fonctions,” Mathematica (Cluj), 4, 38–53 (1930).

    MATH  Google Scholar 

  19. J. Karamata, “Sur un mode de croissance régulière. Théoremès fondamentaux,” Bull. Soc. Math. France, 61, 55–62 (1933).

    MathSciNet  Google Scholar 

  20. J. Karamata, “Bemerkung über die vorstehende Arbeit des Herrn Avakumović, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen,” Bull. Int. Acad. Youg. Sci., 29–30, 117–123 (1936).

    Google Scholar 

  21. G. Keller, G. Kersting, and U. Rösler, “On the asymptotic behavior of solutions of stochastic differential equations,” Z. Wahrscheinlichkeitstheor. verw. Geb., 68, 163–184 (1984).

    Article  MATH  Google Scholar 

  22. J. Korevaar, T. van Aardenne-Ehrenfest, and N. G. de Bruijn, “A note on slowly oscillating functions,” Nieuw Arch. Wisk., 23, 77–86 (1949).

    Google Scholar 

  23. B. A. Rogozin, “A Tauberian theorem for increasing functions of dominated variation,” Sib. Math. J., 43, 353–356 (2002).

    Article  MathSciNet  Google Scholar 

  24. E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  25. A. L. Yakymiv, “Asymptotics properties of the state change points in a random record process,” Theory Probab. Appl., 31, 508–512 (1987).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 10, pp. 1299–1308, October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buldygin, V.V., Klesov, O.I. & Steinebach, J.G. On the convergence of positive increasing functions to infinity. Ukr Math J 62, 1507–1518 (2011). https://doi.org/10.1007/s11253-011-0446-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0446-7

Keywords

Navigation