Skip to main content
Log in

Removal of singularities and analogs of the Sokhotskii–Weierstrass theorem for Q-mappings

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove that an open discrete Q-mapping \( f:D \to \overline {{\mathbb{R}^n}} \) has a continuous extension to an isolated boundary point if the function Q(x) has finite mean oscillation or logarithmic singularities of order at most n – 1 at this point. Moreover, the extended mapping is open and discrete and is a Q-mapping. As a corollary, we obtain an analog of the well-known Sokhotskii–Weierstrass theorem on Q-mappings. In particular, we prove that an open discrete Q-mapping takes any value infinitely many times in the neighborhood of an essential singularity, except, possibly, for a certain set of capacity zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. Tamrazov, “Moduli and extremal metrics on nonorientable and twisted Riemannian manifolds,” Ukr. Mat. Zh., 50, No. 10, 1388–1398 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MATH  MathSciNet  Google Scholar 

  3. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Commun. Pure Appl. Math., 14, 415–426 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. D. Anal. Math., 93, 215–236 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 465, 1–13 (1970).

    Google Scholar 

  6. S. Rickman, Quasiregular Mappings. Results in Mathematics and Related Areas (3), 26, Springer, Berlin (1993).

    Google Scholar 

  7. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  8. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  9. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    Google Scholar 

  10. N. V. Zorii, “Modular, functional, and potential characteristics of condensers in a domain; relations between them,” Ukr. Mat. Zh., 44, No. 5, 604–613 (1992).

    Article  MathSciNet  Google Scholar 

  11. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  12. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University, Princeton (1948).

    MATH  Google Scholar 

  13. K. Kuratowski, Topology [Russian translation], Vol. 2, Mir, Moscow (1969).

    Google Scholar 

  14. G. T. Whyburn, Analytic Topology, American Mathematical Society, Providence, RI (1942).

    MATH  Google Scholar 

  15. C. J. Titus and G. S. Yong, “The extension of interiority, with some applications,” Trans. Amer. Math. Soc., 103, 329–340 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford (2001).

    Google Scholar 

  17. V. M. Miklyukov, “Optimal Lavrent’ev distance and simple ends on nonparametric surfaces,” Ukr. Mat. Vestn., 1, No. 3, 349–372 (2004).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 1, pp. 116–126, January, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevost’yanov, E.A. Removal of singularities and analogs of the Sokhotskii–Weierstrass theorem for Q-mappings. Ukr Math J 61, 140–153 (2009). https://doi.org/10.1007/s11253-009-0190-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0190-4

Keywords

Navigation