Skip to main content
Log in

Approximation of the classes C ψβ H ω by generalized Zygmund sums

  • Published:
Ukrainian Mathematical Journal Aims and scope

We obtain asymptotic equalities for the least upper bounds of approximations by Zygmund sums in the uniform metric on the classes of continuous 2π-periodic functions whose (ψ, β)-derivatives belong to the set H ω in the case where the sequences ψ that generate the classes tend to zero not faster than a power function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Stepanets, “Classification of periodic functions and the rate of convergence of their Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat., 50, No. 1, 101–136 (1986).

    MathSciNet  Google Scholar 

  2. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).

    MATH  Google Scholar 

  3. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).

    Google Scholar 

  4. V. T. Gavrilyuk, “ On the characteristic of the saturation class C ψ0 L ,” Ukr. Mat. Zh., 38, No. 4, 421–427 (1986).

    MathSciNet  Google Scholar 

  5. V. T. Gavrilyuk, “Saturation classes of linear summation methods for Fourier series,” Ukr. Mat. Zh., 40, No. 5, 569–576 (1988).

    MathSciNet  Google Scholar 

  6. S. M. Nikol’skii, “On linear methods for summation of Fourier series,” Izv. Akad. Nauk. SSSR, Ser. Mat., 12, No. 3, 259–278 (1948).

    Google Scholar 

  7. A. I. Stepanets, V. I. Rukasov, and S. O. Chaichenko, Approximation by de la Vallée Poussin Sums [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2007).

    Google Scholar 

  8. A. N. Kolmogoroff, “Zur Grössenordnung des Restliedes Fouriershen Reihen differenzierbaren Functionen,” Ann. Math., 36, 521–526 (1935).

    Article  MathSciNet  Google Scholar 

  9. S. M. Nikol’skii, “Approximation of periodic functions by trigonometric polynomials,” Tr. Mat. Inst. Akad. Nauk SSSR, 15, 1–76 (1945).

    Google Scholar 

  10. B. Sz. Nagy, “Sur une classe générale de procédés de summation pour les séries de Fourier,” Hung. Acta Math., 3, 14–52 (1948).

    Google Scholar 

  11. A. F. Timan, Theory of Approximation of Functions of a Real Variable [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  12. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  13. S. B. Stechkin, “Estimation of the remainder for the Fourier series of differentiable functions”, Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980).

    MATH  MathSciNet  Google Scholar 

  14. N. P. Korneichuk, Extremal Problems in Approximation Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  15. A. V. Efimov, “Linear approximation methods for some classes of continuous periodic functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 62, 3–47 (1961).

    MATH  MathSciNet  Google Scholar 

  16. S. A. Telyakovskii, “Norms of trigonometric polynomials and the approximation of differentiable functions by linear means of their Fourier series,” Tr. Mat. Inst. Akad. Nauk SSSR, 62, 61–67 (1961).

    Google Scholar 

  17. S. A. Telyakovskii, “Approximation of differentiable functions by partial sums of their Fourier series,” Mat. Zametki, 4, No. 3, 291–300 (1968).

    MathSciNet  Google Scholar 

  18. V. P. Motornyi, “Approximation of periodic functions by trigonometric polynomials in the mean,” Mat. Zametki, 16, No. 1, 15–26 (1974).

    MATH  MathSciNet  Google Scholar 

  19. R. M. Trigub, “Multipliers of Fourier series and approximation of functions by polynomials in spaces L and C,” Dokl. Akad. Nauk SSSR, 306, No. 2, 292–296 (1989).

    Google Scholar 

  20. D. N. Bushev, Approximation of Classes of Continuous Periodic Functions by Zygmund Sums [in Russian], Preprint No. 84.56, Institute of Mathematics, Academy of Sciences of the Ukr. SSR, Kiev (1984).

    Google Scholar 

  21. I. B. Koval’skaya, “Approximation of classes of periodic functions by analogs of Zygmund sums in the metric of C,” in: Approximation of Classes of Periodic One-Variable and Multivariable Functions in the Metrics of C and L p [in Russian], Preprint No. 84.14, Institute of Mathematics, Academy of Sciences of the Ukr. SSR, Kiev (1988), pp. 3–28.

    Google Scholar 

  22. O. A. Novikov, Approximation of Classes of Continuous Periodic Functions by Linear Methods [in Russian], Preprint No. 91.50, Institute of Mathematics, Academy of Sciences of the Ukr. SSR, Kiev (1991).

    Google Scholar 

  23. O. V. Ostrovskaya, “Approximation of classes of periodic functions by generalized Zygmund sums in the metric of C,” in: Fourier Series: Theory and Applications, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1992), pp. 69–87.

    Google Scholar 

  24. V. I. Rukasov and O. A. Novikov, “Approximation of functions with small smoothness of the classes \( C_\infty^{\overline {{\uppsi }} }\) by linear methods,” in: Approximation Theory and Harmonic Analysis, Proceedings of the Ukrainian Mathematical Congress [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002), pp. 184–193.

    Google Scholar 

  25. O. V. Ostrovs’ka, “Approximation of periodic functions of the classes C ψβ H ω by generalized Zygmund sums,” in: Fourier Series: Theory and Applications, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1998), pp. 181–191.

    Google Scholar 

  26. Sh. Sh. Shogunbekov, “On approximation of periodic functions by partial sums of their Fourier series,” Dokl. Akad. Nauk Tadzh. SSR, 32, No. 10, 661–664 (1989).

    MATH  MathSciNet  Google Scholar 

  27. A. I. Stepanets, “ Approximative properties of the Zygmund method,” Ukr. Mat. Zh., 51, No. 4, 493–518 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. I. Stepanets, “Approximation of periodic functions of Hölder classes by Riesz sums,” Mat. Zametki, 21, No. 3, 341–354 (1977).

    MATH  MathSciNet  Google Scholar 

  29. A. I. Stepanets, “Approximation of \( \overline {{\uppsi }} \)-integrals of periodic functions by Fourier sums (small smoothness),” Ukr. Mat. Zh., 50, No. 2, 274–291 (1988).

    MathSciNet  Google Scholar 

  30. A. I. Stepanets, “Rate of convergence of Fourier series on classes of \( \overline {{\uppsi }} \)-integrals,” Ukr. Mat. Zh., 49, No. 8, 1069–1113 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  31. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 4, pp. 524–537, April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyuk, A.S., Ovsii, E.Y. Approximation of the classes C ψβ H ω by generalized Zygmund sums. Ukr Math J 61, 627–644 (2009). https://doi.org/10.1007/s11253-009-0229-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0229-6

Keywords

Navigation