Skip to main content
Log in

Lax-integrable Laberge–Mathieu hierarchy of supersymmetric nonlinear dynamical systems and its finite-dimensional reduction of Neumann type

  • Published:
Ukrainian Mathematical Journal Aims and scope

A compatibly bi-Hamiltonian Laberge–Mathieu hierarchy of supersymmetric nonlinear dynamical systems is obtained by using a relation for the Casimir functionals of the central extension of a Lie algebra of superconformal even vector fields of two anticommuting variables. Its matrix Lax representation is determined by using the property of the gradient of the supertrace of the monodromy supermatrix for the corresponding matrix spectral problem. For a supersymmetric Laberge–Mathieu hierarchy, we develop a method for reduction to a nonlocal finite-dimensional invariant subspace of the Neumann type. We prove the existence of a canonical even supersymplectic structure on this subspace and the Lax–Liouville integrability of the reduced commuting vector fields generated by the hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lax, “Periodic solutions of the Korteweg–de Vries equation,” Commun. Pure Appl. Math., 28, No. 2, 85–96 (1975).

    MathSciNet  Google Scholar 

  2. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  3. A. Prykarpatsky and I. Mykytiuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer, Dordrecht (1998).

    MATH  Google Scholar 

  4. O. Hentosh, M. Prytula, and A. Prykarpats’kyi, Differential-Geometric and Lie-Algebraic Foundations of Investigation of Nonlinear Dynamical Systems on Functional Manifolds [in Ukrainian], Lviv National University, Lviv (2006).

    Google Scholar 

  5. A. K. Prykarpats’kyi and B. M. Fil’, “Category of topological jet-manifolds and some applications to the theory of nonlinear infinitedimensional dynamical systems,” Ukr. Mat. Zh., 44, No. 9, 1242–1256 (1992).

    Google Scholar 

  6. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  7. A. G. Reiman and M. A. Semenov Tyan-Shanskii, Integrable Systems. Group-Theoretic Approach [in Russian], Institute of Computer Investigations, Izhevsk (2003).

  8. W. Oevel, “R-structures, Yang–Baxter equations and related involution theorems,” J. Math. Phys., 30, No. 5, 1140–1149 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu. I. Manin and A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy,” Commun. Math. Phys., 98, 65–77 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Oevel and Z. Popowicz, “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems,” Commun. Math. Phys., 139, 441–460 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Morosi and L. Pizzocchero, “On the bi-Hamiltonian structure of the supersymmetric KdV hierarchies. A Lie superalgebraic approach,” Commun. Math. Phys., 158, 267–288 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Morosi and L. Pizzocchero, “osp(3, 2) and gl(3, 3) supersymmetric KdV hierarchies. A Lie superalgebraic approach,” Phys. Lett. A, 185, 241–252 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Magri, “A simple model of the integrable Hamiltonian equation,” J. Math. Phys., 19, 1156–1162 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  15. P. P. Kulish, “An analog of the Korteweg–de Vries equation for a superconformal algebra,” Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. AN SSSR, 155, 142–148 (1986).

    Google Scholar 

  16. O. E. Hentosh, “Compatibly bi-Hamiltonian superconformal analogs of Lax-integrable nonlinear dynamical systems,” Ukr. Mat. Zh., 58, No. 7, 887–900 (2006).

    Article  Google Scholar 

  17. D. A. Leites and B. L. Feigin, “New Lie superalgebras of string theories,” in: Group-Theoretic Methods in Physics [in Russian], Vol. 1, Nauka, Moscow (1983), pp. 269–278.

    Google Scholar 

  18. P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation,” J. Math. Phys., 29, No. 11, 2499–2506 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Prykarpatsky, O. Hentosh, M. Kopych, and R. Samuliak, “Neumann–Bogolyubov–Rosochatius oscillatory dynamical systems and their integrability via dual moment maps. I,” J. Nonlin. Math. Phys., 2, No. 2, 98–113 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. C.-A. Laberge and P. Mathieu, “N = 2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg–de Vries equation,” Phys. Lett. B, 215, No. 4, 718–722 (1988).

    Article  MathSciNet  Google Scholar 

  21. O. I. Bogoyavlenskii and S. P. Novikov, “On the relationship between the Hamiltonian formalisms of stationary and nonstationary problems,” Funkts. Anal. Prilozhen., 10, No. 1, 9–13 (1976).

    Google Scholar 

  22. J. Moser, “Some aspects of integrability of Hamiltonian systems,” Usp. Mat. Nauk, 36, No. 5, 109–151 (1981).

    MATH  Google Scholar 

  23. A. K. Prykarpatsky, O. E. Hentosh, and D. L. Blackmore, “The finite-dimensional Moser type reductions of modified Boussinesq and super-Korteweg–de Vries Hamiltonian systems via the gradient-holonomic algorithm and the dual moment maps. I,” J. Nonlin. Math. Phys., 4, No. 3-4, 455–469 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, New York (1998).

    MATH  Google Scholar 

  25. A. M. Samoilenko and Ya. A. Prykarpats’kyi, Algebraic-Analytic Aspects of Completely Integrable Dynamical Systems and Their Perturbations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2002).

  26. O. E. Hentosh, “Hamiltonian finite-dimensional reductions of oscillatory type for Lax-integrable superconformal hierarchies,” Nelin. Kolyvannya, 58, No. 7, 887–900 (2006).

    Google Scholar 

  27. I. M. Gel’fand and L. A. Dikii, “Integrable nonlinear equations and Liouville theorem,” Funkts. Anal. Prilozhen., 13, No. 1, 8–20 (19790.

    MathSciNet  MATH  Google Scholar 

  28. V. A. Marchenko, Sturm–Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).

    MATH  Google Scholar 

  29. V. I. Arnol’d, Mathematical Methods in Classical Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  30. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebra [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  31. V. N. Shander, “On the complete integrability of ordinary differential equations on supermanifolds,” Funkts. Anal. Prilozhen., 17, No. 1, 89–90 (19830.

    MathSciNet  Google Scholar 

  32. F. A. Berezin, Introduction to Algebra with Anticommuting Variables [in Russian], Moscow University, Moscow (1983).

    Google Scholar 

  33. V. N. Shander, “Analogues of the Frobenius and Darboux theorems for supermanifolds,” Dokl. Bolgar. Akad. Nauk, 36, No. 3, 309–311 (1983).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 7, pp. 906–921, July, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentosh, O.E. Lax-integrable Laberge–Mathieu hierarchy of supersymmetric nonlinear dynamical systems and its finite-dimensional reduction of Neumann type. Ukr Math J 61, 1075–1092 (2009). https://doi.org/10.1007/s11253-009-0260-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0260-7

Keywords

Navigation