Skip to main content
Log in

Hausdorff–Besicovitch dimension of the graph of one continuous nowhere-differentiable function

  • Published:
Ukrainian Mathematical Journal Aims and scope

We investigate fractal properties of the graph of the function

$$y = f(x) = \sum\limits_{k - 1}^\infty \frac{{\beta _k }}{{2_k }} \equiv \Delta _{\beta _1 \beta _2 \ldots \beta _{k \ldots } }^2 ,$$

where

$$\beta _1 = \left\{ {\begin{array}{lll} 0 & {{\text{if}}} & {{{\alpha }}_{\text{1}} \left( x \right) = 0,} \\ 1 & {{\text{if}}} & {{{\alpha }}_1 \left( x \right) \ne 0,} \\ \end{array} } \right.$$
$$\beta _k = \left\{ {\begin{array}{lllc} {\beta _{k - 1} } \hfill & {{\text{if}}} \hfill & {\alpha _k \left( x \right) = \alpha _{k - 1} \left( x \right),} \hfill & {} \hfill \\ {1 - \beta _{k - 1} } \hfill & {{\text{if}}} \hfill & {\alpha _k \left( x \right) \ne \alpha _{k - 1} \left( x \right),} \hfill & {k > 1,} \hfill \\ \end{array} } \right.$$

and ‎α k (x)is the kth ternary digit of x: In particular, we prove that this graph is a fractal set with Hausdorff–Besicovitch α 0 f )=log2(1+2log 23 ) dimension and cell dimension αK f )=2-log32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Pratsevityi, “Continuous Cantor projectors,” in: Methods for Investigation of Algebraic and Topological Structures [in Russian], KGPI, Kiev (1989), pp. 78–90.

    Google Scholar 

  2. A. F. Turbin and N. V. Pratsevityi, Fractal Sets, Functions, and Distributions [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  3. M. V. Prats’ovytyi, “Fractal properties of a continuous nowhere-differentiable function,” Nauk. Zap. Nats. Ped. Univ. im. Drahomanova, Ser. Fiz.-Mat. Nauk., No. 3, 327–338 (2002).

  4. V. Koval’, “Self-affine graphs of functions,” Nauk. Chas. Nats. Ped. Univ. im. Drahomanova, Ser. Fiz.-Mat. Nauk, No. 4, 292–299 (2004).

  5. K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester (2003).

    MATH  Google Scholar 

  6. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], Drahomanov National Pedagogic University, Kyiv (1998).

    Google Scholar 

  7. C. McMullen, “The Hausdorff dimension of general Sierpi´nski carpets,” Nagoya Math. J., 96, 1–9 (1984).

    MATH  MathSciNet  Google Scholar 

  8. T. Kamae, “A characterization of self-affine functions,” Jpn. J. Appl. Math., 3, 217–280 (1986).

    MathSciNet  Google Scholar 

  9. R. Kenyon and Y. Peres, “Hausdorff dimensions of sofic affine-invariant sets,” Isr. J. Math., 94, 157–178 (1996).

    Article  MathSciNet  Google Scholar 

  10. S. Takahashi, “Dimension spectra of self-affine sets,” Isr. J. Math., 127, 1–18 (2002).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 9, pp. 1225–1239, September, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasenko, O.B. Hausdorff–Besicovitch dimension of the graph of one continuous nowhere-differentiable function. Ukr Math J 61, 1448–1466 (2009). https://doi.org/10.1007/s11253-010-0288-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0288-8

Keywords

Navigation