Skip to main content
Log in

Schur convexity and Schur multiplicative convexity for a class of symmetric functions with applications

  • Published:
Ukrainian Mathematical Journal Aims and scope

For x = (x 1, x 2, …, x n ) ∈ (0, 1 ]n and r ∈ { 1, 2, … , n}, a symmetric function F n (x, r) is defined by the relation

$$ {F_n}\left( {x,r} \right) = {F_n}\left( {{x_1},{x_2}, \ldots, {x_n};r} \right) = \sum\limits_{1{ \leqslant_1} < {i_2} \ldots {i_r} \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - {x_{{i_j}}}}}{{{x_{{i_j}}}}}} }, $$

where i 1, i 2 ,… , i n are positive integers. This paper deals with the Schur convexity and Schur multiplicative convexity of F n (x, r). As applications, some inequalities are established by using the theory of majorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Alzer, “A short proof of Ky Fan’s inequality,” Arch. Math. (Brno), 27B, 199–200 (1991).

    MathSciNet  Google Scholar 

  2. E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin (1961).

    Google Scholar 

  3. P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer, Dordrecht (2003).

    MATH  Google Scholar 

  4. Y. M. Chu and X. M. Zhang, “Necessary and sufficient conditions such that extended mean values are Schur-convex or Schurconcave,” J. Math. Kyoto Univ., 48, No. 1, 229–238 (2008).

    MathSciNet  MATH  Google Scholar 

  5. Y. M. Chu, X. M. Zhang, and G. D. Wang, “The Schur geometrical convexity of the extended mean values,” J. Convex Anal., 15, No. 4, 707–718 (2008).

    MathSciNet  MATH  Google Scholar 

  6. G. M. Constantine, “Schur-convex functions on the spectra of graphs,” Discrete Math., 45, No. 2–3, 181–188 (1985).

    MathSciNet  Google Scholar 

  7. K. Z. Guan, “The Hamy symmetric function and its generalization,” Math. Inequal. Appl., 9, No. 4, 797–805 (2006).

    MathSciNet  MATH  Google Scholar 

  8. K. Z. Guan, “Schur-convexity of the complete symmetric function,” Math. Inequal. Appl., 9, No. 4, 567–576 (2006).

    MathSciNet  MATH  Google Scholar 

  9. K. Z. Guan, “Some properties of a class of symmetric functions,” J. Math. Anal. Appl., 336, No. 1, 70–80 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Z. Guan, “A class of symmetric functions for multiplicatively convex function,” Math. Inequal. Appl., 10, No. 4, 745–753 (2007).

    MathSciNet  MATH  Google Scholar 

  11. K. Z. Guan and J. H. Shen, “Schur-convexity for a class of symmetric functions and its applications,” Math. Inequal. Appl., 9, No. 2, 199–210 (2006).

    MathSciNet  MATH  Google Scholar 

  12. G. H. Hardy, J. E. Littlewood, and G. Pólya, “Some simple inequalities satisfied by convex functions,” Messenger Math., 58, 145–152 (1929).

    Google Scholar 

  13. F. K. Hwang and U. G. Rothblum, “Partition-optimization with Schur convex sum objective functions,” SIAM J. Discrete Math., 18, No. 3, 512–524 (2004/2005).

    Article  MathSciNet  Google Scholar 

  14. F. K. Hwang, U. G. Rothblum, and L. Shepp, “Monotone optimal multipartitions using Schur convexity with respect to partial orders,” SIAM J. Discrete Math., 6, No. 4, 533–574 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. D. Jiang, “Some properties of dual form of the Hamy’s symmetric function,” J. Math. Inequal., 1, No. 1, 117–125 (2007).

    MathSciNet  MATH  Google Scholar 

  16. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York (1979).

    MATH  Google Scholar 

  17. M. T. McGregor, “On some inequalities of Ky Fan and Wang-Wang,” J. Math. Anal. Appl., 180, No. 1, 182–188 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. M. Mercer, “A short proof of Ky Fan’s arithmetic-geometric inequality,” J. Math. Anal. Appl., 204, No. 3, 940–942 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Merkle, “Convexity, Schur-convexity and bounds for the gamma function involving the digamma function,” Rocky Mountain J. Math., 28, No. 3, 1053–1066 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. S. Mitrinovic, Analytic Inequalities, Springer, New York (1970).

    MATH  Google Scholar 

  21. C. P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl., 3, No. 2, 155–167 (2000).

    MathSciNet  MATH  Google Scholar 

  22. J. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, New York (1992).

    MATH  Google Scholar 

  23. F. Qi, “A note on Schur-convexity of extended mean values,” Rocky Mountain J. Math., 35, No. 5, 1787–1793 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Qi, J. Sándor, S. S. Dragomir, and A. Sofo, “Note on the Schur-convexity of the extended mean values,” Taiwan. J. Math., 9, No. 3, 411–420 (2005).

    MATH  Google Scholar 

  25. M. Shaked, J. G. Shanthikumar, and Y. L. Tong, “Parametric Schur convexity and arrangement monotonicity properties of partial sums,” J. Multivar. Anal., 53, No. 2, 293–310 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. N. Shi, “Schur-convex functions related to Hadamard-type inequalities,” J. Math. Inequal., 1, No. 1, 127–136 (2007).

    MathSciNet  MATH  Google Scholar 

  27. H. N. Shi, S. H. Wu, and F. Qi, “An alternative note on the Schur-convexity of the extended mean values,” Math. Inequal. Appl., 9, No. 2, 219–224 (2006).

    MathSciNet  MATH  Google Scholar 

  28. C. Stepniak, “An effective characterization of Schur-convex functions with applications,” J. Convex Anal., 14, No. 1, 103–108 (2007).

    MathSciNet  Google Scholar 

  29. C. Stepniak, “Stochastic ordering and Schur-convex functions in comparison of linear experiments,” Metrika, 36, No. 5, 291–298 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. H. Wu, “Generalization and sharpness of the power means inequality and their applications,” J. Math. Anal. Appl., 312, No. 2, 637–652 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. X. M. Zhang, “Optimization of Schur-convex functions,” Math. Inequal. Appl., 1, No. 3, 319–330 (1998).

    MathSciNet  MATH  Google Scholar 

  32. X. M. Zhang, “Schur-convex functions and isoperimetric inequalities,” Proc. Amer. Math. Soc., 126, No. 2, 461–470 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 10, pp. 1306–1318, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, WF., Chu, YM. Schur convexity and Schur multiplicative convexity for a class of symmetric functions with applications. Ukr Math J 61, 1541–1555 (2009). https://doi.org/10.1007/s11253-010-0296-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0296-8

Keywords

Navigation