Skip to main content
Log in

Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider a singularly perturbed system depending on two parameters with two (possibly the same) normally hyperbolic center manifolds. We assume that the unperturbed system has an orbit that connects a hyperbolic fixed point on one center manifold to a hyperbolic fixed point on the other. Then we prove some old and new results concerning the persistence of these connecting orbits and apply the results to find examples of systems in dimensions greater than three that possess Sil’nikov saddle-focus homoclinic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Battelli and K. J. Palmer, “Singular perturbations, transversality, and Sil’nikov saddle focus homoclinic orbits,” J. Dynam. Different. Equat., 15, 357–425 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Szmolyan, “Transversal heteroclinic and homoclinic orbits in singular perturbation problems,” J. Different. Equat., 92, 252–281 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  3. W.-J. Beyn and M. Stiefenhofer, “A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems,” J. Dynam. Different. Equat., 99, 671–709 (1999).

    Article  MathSciNet  Google Scholar 

  4. F. Battelli and K. J. Palmer, “Heteroclinic connections in singularly perturbed systems,” Disc. Cont. Dynam. Syst. (to appear).

  5. F. Battelli and K. J. Palmer, “Transverse intersection of invariant manifolds in singular systems,” J. Different. Equat., 177, 77–120 (2001).

    Article  MathSciNet  Google Scholar 

  6. L. P. Sil’nikov, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type,” Mat. Sb., 10, 91–102 (1970).

    Article  MathSciNet  Google Scholar 

  7. B. Deng, “On Sil’nikov’s homoclinic-saddle-focus theorem,” J. Different. Equat., 102, 305–329 (1993).

    Article  MATH  Google Scholar 

  8. S. P. Hastings, “Single and multiple pulse waves for FitzHugh Nagumo equation,” SIAM J. Appl. Math., 42, 247–260 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Deng and G. Hines, “Food chain chaos due to Sil’nikov’s orbits,” Chaos, 12, 533–538 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. Z. C. Feng and S. Wiggins, “On the existence of chaos in a class of two degree of freedom, damped, parametrically forced mechanical systems with broken O(2) symmetry,” Z. Angew. Math. Phys., 44, 201–248 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. A. Rodriguez, “Bifurcation to homoclinic connections of the focus-saddle type,” Arch. Ration. Mech. Anal., 93, 81–90 (1986).

    Article  MATH  Google Scholar 

  12. F. Battelli and K. J. Palmer, “A remark about Sil’nikov saddle-focus homoclinic orbits” (to appear).

  13. F. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” J. Different. Equat., 31, 53–98 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Sakamoto, “Invariant manifolds in singular perturbation problems for ordinary differential equations,” Proc. Roy. Soc. Edinburgh A, 116, 45–78 (1990).

    MATH  MathSciNet  Google Scholar 

  15. F. Battelli and M. Fečkan, “Global centre manifolds in singular systems,” Nonlinear Different. Equat. Appl., 3, 19–34 (1996).

    Article  Google Scholar 

  16. R. A. Johnson and G. R. Sell, “Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,” J. Different. Equat., 41, 262–288 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. K. Hale, “Introduction to dynamic bifurcation,” Bifurcation Theory Appl. Lect. Notes Math., 1057, 106–151 (1984).

    MathSciNet  Google Scholar 

  18. K. J. Palmer, “Transverse heteroclinic orbits and Cherry’s example of a nonintegrable Hamiltonian system,” J. Different. Equat., 65, 321–360 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  19. K. J. Palmer, “Existence of a transverse homoclinic point in a degenerate case,” Rocky Mountain J. Math., 20, 1099–1118 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  20. K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225–256 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Kokubu, K. Mischaikow, and H. Oka, “Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equation,” Nonlinearity, 9, 1263–1280 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 1, pp. 28–55, January, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battelli, F., Palmer, K.J. Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems. Ukr Math J 60, 29–58 (2008). https://doi.org/10.1007/s11253-008-0040-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0040-9

Keywords

Navigation