Skip to main content
Log in

Controllability in oscillation dynamical systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider the problem of controllability in oscillation dynamical systems. A solution of the local control problem is obtained for one class of systems of differential equations. An example of application of the main results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. N. Kolmogorov, “On conservation of conditionally periodic motions for a small change in the Hamiltonian function,” Dokl. Akad. Nauk SSSR, 98, No. 4, 527–530 (1954).

    MATH  MathSciNet  Google Scholar 

  2. V. I. Arnol’d, “Small denominators. The proof of the Kolmogorov theorem on the conservation of conditionally periodic motions for a small change in the Hamiltonian function,” Usp. Mat. Nauk, 18, No. 5, 13–40 (1963).

    Google Scholar 

  3. V. I. Arnol’d, “Small denominators and the problem of stability of motion in classical and celestial mechanics,” Usp. Mat. Nauk, 18, No. 6, 91–192 (1963).

    Google Scholar 

  4. J. Moser, “Convergent series expansions for quasi-periodic motions,” Math. Ann., 169, 136–176 (1969).

    Article  Google Scholar 

  5. J. K. Moser, Lectures on Hamiltonian Systems, Courant Institute of Mathematical Sciences, New York (1969).

    Google Scholar 

  6. N. M. Krylov and N. N. Bogolyubov, An Introduction to Nonlinear Mechanics [in Russian], Academy of Sciences of Ukr. SSR, Kiev (1937).

    Google Scholar 

  7. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  8. A. M. Samoilenko, “Green function of a linear extension of a dynamical system on a torus, conditions of its uniqueness, and properties that follow from these conditions,” Ukr. Mat. Zh., 32, No. 6, 791–797 (1980).

    Article  Google Scholar 

  9. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).

    Google Scholar 

  10. A. M. Samoilenko, Investigation of a Dynamical System in the Neighborhood of a Quasiperiodic Trajectory [in Russian], Preprint No. 90.35, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1990).

    Google Scholar 

  11. A. M. Samoilenko and M. Ilolov, “Invariant tori of differential equations in a Banach space,” Ukr. Mat. Zh., 44, No. 1, 93–100 (1998).

    MathSciNet  Google Scholar 

  12. M. Ilolov and A. Él’nazarov, “Invariant tori of differential equations with delay in a Banach space,” Dokl. Akad. Nauk Respub. Tadzhikistan, 49, No. 2, 101–105 (2006).

    Google Scholar 

  13. E. M. Bollt and J. D. Meiss, “Breakup of invariant tori for the four-dimensional semi-standard map,” Physica D, 66, Issues 3–4, 282–297 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Berretti and S. Marmi, “Standard map at complex rotation numbers: creation of natural boundaries,” Phys. Rev. Lett., 68, 1443–1446 (1992).

    Article  Google Scholar 

  15. R. S. MacKay, J. D. Meiss, and J. Stark, “Converse KAM theory for symplectic twist maps,” Nonlinearity, 2, 555–570 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Chandre and H. R. Jausin, “Renormalization-group analysis for the transition to chaos in Hamiltonian systems,” Phys. Rep., 365, Issue 1 (2002).

    Google Scholar 

  17. E. Stephen, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York (2003).

    MATH  Google Scholar 

  18. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett., 64, No. 11, 1196–1199 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, “Using small perturbations to control chaos,” Nature, 363, 411–417 (1993).

    Article  Google Scholar 

  20. D. J. Gauthier, “Controlling chaos,” Amer. J. Phys., 71, 750 (2003).

    Article  Google Scholar 

  21. C. Chandre, G. Ciraolo, F. Doevit, et al., “Channelling chaos by building barriers,” Phys. Rev. Lett., 94, 074101 (2005).

    Google Scholar 

  22. A. Macor, F. Doveil, C. Chandre, et al., Channelling Chaotic Transport in a Wave-Particle Experiment, Arch. at http://arxive.org.physics/0608119 (2006).

  23. F. Doveil, K. Auhmani, A. Macor, and D. Guyomarc’h, “Experimental observation of resonance overlap responsible for Hamiltonian chaos,” Phys. Plasma, 12, 010702 (2005).

    Google Scholar 

  24. S. Huang, C. Chandre, and T. User, “Reducing multiphoton ionization in a linearly polarized microwave field by local control,” Phys. Rev. A., 74, 053408 (2006).

    Google Scholar 

  25. C. Chandre, M. Vittot, G. Ciraolo, et al., “Control of stochasticity in magnetic field lines,” Nucl. Fusion, 46, 33–45 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 2, pp. 183–191, February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilolov, M., Él’nazarov, A.A. Controllability in oscillation dynamical systems. Ukr Math J 60, 211–220 (2008). https://doi.org/10.1007/s11253-008-0053-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0053-4

Keywords

Navigation