Abstract
We analyze the conditions of existence and the numerical-analytic method for the approximate construction of periodic solutions of nonlinear autonomous systems of differential equations in the critical case.
Similar content being viewed by others
References
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).
N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1963).
E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods in the Analysis of Nonlinear Systems [in Russian], Nauka, Moscow (1979).
I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations [in Russian], Gostekhizdat, Moscow (1956).
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of the Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).
A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht-Boston (2004).
S. N. Chuiko, “Region of convergence of the iterative procedure for an autonomous boundary-value problem,” Nelin. Kolyv., 9, No. 3, 416–432 (2006).
I. I. Korol’ and M. O. Perestyuk, “On the A. M. Samoilenko numerical-analytic method of successive periodic approximations,” Ukr. Mat. Zh., 58, No. 4, 472–489 (2006).
I. I. Korol’, “On periodic solutions of one class of systems of differential equations,” Ukr. Mat. Zh., 57, No. 4, 483–495 (2005).
Author information
Authors and Affiliations
Additional information
__________
Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 3, pp. 332–339, March, 2008.
Rights and permissions
About this article
Cite this article
Korol’, I.I. Investigation of the periodic solutions of nonlinear autonomous systems in the critical case. Ukr Math J 60, 384–394 (2008). https://doi.org/10.1007/s11253-008-0064-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-008-0064-1