Skip to main content
Log in

Investigation of the periodic solutions of nonlinear autonomous systems in the critical case

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We analyze the conditions of existence and the numerical-analytic method for the approximate construction of periodic solutions of nonlinear autonomous systems of differential equations in the critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).

    Google Scholar 

  2. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1963).

    Google Scholar 

  3. E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods in the Analysis of Nonlinear Systems [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  4. I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations [in Russian], Gostekhizdat, Moscow (1956).

    MATH  Google Scholar 

  5. A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of the Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  6. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht-Boston (2004).

    MATH  Google Scholar 

  7. S. N. Chuiko, “Region of convergence of the iterative procedure for an autonomous boundary-value problem,” Nelin. Kolyv., 9, No. 3, 416–432 (2006).

    MathSciNet  Google Scholar 

  8. I. I. Korol’ and M. O. Perestyuk, “On the A. M. Samoilenko numerical-analytic method of successive periodic approximations,” Ukr. Mat. Zh., 58, No. 4, 472–489 (2006).

    MathSciNet  Google Scholar 

  9. I. I. Korol’, “On periodic solutions of one class of systems of differential equations,” Ukr. Mat. Zh., 57, No. 4, 483–495 (2005).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 3, pp. 332–339, March, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korol’, I.I. Investigation of the periodic solutions of nonlinear autonomous systems in the critical case. Ukr Math J 60, 384–394 (2008). https://doi.org/10.1007/s11253-008-0064-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0064-1

Keywords

Navigation