Skip to main content
Log in

Specific features of application of perturbation techniques in problems of nonlinear oscillations of a liquid with free surface in cavities of noncylindrical shape

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider the problem of nonlinear oscillations of an ideal incompressible liquid in a tank of a body-of-revolution shape. It is shown that the ordinary way of application of perturbation techniques results in the violation of solvability conditions of the problem. To avoid this contradiction we introduce some additional conditions and revise previously used approaches. We construct a discrete nonlinear model of the investigated problem on the basis of the Hamilton-Ostrogradskii variational formulation of the mechanical problem, preliminarily satisfying the kinematic boundary conditions and solvability conditions of the problem. Numerical examples testify to the efficiency of the constructed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ambrosi, “Hamiltonian formulation for surface waves in a layered fluid,” Wave Motion, 31, 71–76 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. K. A. Abgaryan and I. M. Rappoport, Dynamics of Rockets [in Russian], Mashinostroenie, Moscow (1969).

    Google Scholar 

  3. H. F. Bauer and W. Eidel, “Nonlinear liquid motion in conical containers,” Acta Mech., 73, Nos. 1–4, 11–31 (1988).

    Article  MATH  Google Scholar 

  4. H. F. Bauer and W. Eidel, “Liquid oscillation in a prolate spheroidal container,” Ing. Arch., 59, No. 5, 371–381 (1989).

    Article  Google Scholar 

  5. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  6. I. B. Bogoryad, I. A. Druzhinin, G. Z. Druzhinina, and E. E. Libin, Introduction to Dynamics of Vessels with Liquid [in Russian], Tomsk University, Tomsk (1977).

    Google Scholar 

  7. I. B. Bogoryad, I. A. Druzhinin, and S. V. Chakhlov, “Investigation of transient processes for large perturbations of the free surface of liquid in a closed tank,” in: Dynamics of Spacecrafts and Space Investigation, Mashinostroenie, Moscow (1986), pp. 194–203.

    Google Scholar 

  8. L. V. Dokuchaev, Nonlinear Dynamics of Spacecrafts with Deformable Elements [in Russian], Mashinostroenie, Moscow (1987).

    Google Scholar 

  9. I. A. Druzhinin and S. V. Chakhlov, “Computation of nonlinear oscillations of liquid in a vessel (the Cauchy problem),” in: Dynamics of Elastic and Rigid Bodies Interacting with Liquid, Tomsk University, Tomsk (1981), pp. 85–91.

    Google Scholar 

  10. O. M. Faltinsen, O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha, “Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth,” J. Fluid Mech., 407, 201–234 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. G. Gataulin and V. I. Stolbetsov, “Determination of nonlinear oscillations of liquid in a cylindrical circular sector,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaz., No. 5, 124–131 (1970).

  12. L. A. Ibrahim, Liquid Sloshing Dynamics, Cambridge University Press, New York (2005).

    MATH  Google Scholar 

  13. M. La Rocca, G. Sciortino, and M.-A. Boniforti, “A fully nonlinear model for sloshing in a rotating container,” Fluid Dynam. Res., No. 27, 23–52 (2000).

    Google Scholar 

  14. O. S. Limarchenko, “Variational statement of the problem about motion of a reservoir with liquid,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 904–908 (1978).

  15. O. S. Limarchenko, “Direct method for solving nonlinear problems of dynamics of a reservoir carrying liquid,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 999–1002 (1978).

  16. O. S. Limarchenko, “Application of a variational method of solving nonlinear problems of dynamics of combined motions of a reservoir with liquid,” Sov. Appl. Mech., 19, No. 11, 100–104 (1983).

    Google Scholar 

  17. O. S. Limarchenko, “Investigation of effectiveness of discrete models for solving problems about pulse excitation of a reservoir with liquid,” Math. Phys. Nonlin. Mech., No. 4, 44–48 (1985).

  18. O. S. Limarchenko and V. V. Yasinskii, Nonlinear Dynamics of Structures with Liquid [in Russian], “KPI” National Technical University, Kiev (1997).

    Google Scholar 

  19. O. S. Limarchenko, “Nonlinear properties for dynamic behavior of liquid with a free surface in a rigid moving tank,” Int. J. Nonlin. Sci. Numer. Simul., 1, No. 2, 105–118 (2000).

    MATH  MathSciNet  Google Scholar 

  20. O. S. Limarchenko, G. Matarazzo, and V. V. Yasinskii, Dynamics of Rotational Structures with Liquid [in Russian], Gnozis, Kiev (2002).

    Google Scholar 

  21. I. A. Lukovskii, Nonlinear Oscillations of Liquid in Vessels of Complex Geometric Shape [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  22. I. A. Lukovskii, M. Ya. Barnyak, and A. N. Komarenko, Approximate Methods for Solving Problems of Dynamics of Bounded Liquid Volume [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  23. I. A. Lukovskii, Introduction to Nonlinear Dynamics of a Rigid Body with Cavities Containing Liquid [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  24. G. N. Mikishev, Experimental Methods in Dynamics of Spacecrafts [in Russian], Mashinostroenie, Moscow (1978).

    Google Scholar 

  25. J. Miles, “Nonlinear surface waves in closed basins,” J. Fluid Mech., 75, No. 3, 419–448 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  26. Yu. A. Mitropol’skii, Methods of Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (2005).

    Google Scholar 

  27. Yu. A. Mitropol’skii and O. S. Limarchenko, “Nonlinear properties of liquid wave motion in moving tank,” Nonlin. Oscillations, 2, No. 2, 77–102 (1999).

    Google Scholar 

  28. N. N. Moiseev and V. V. Rumyantsev, Dynamics of Bodies with Cavities Containing Liquid [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  29. G. S. Narimanov, L. V. Dokuchaev, and I. A. Lukovskii, Nonlinear Dynamics of a Spacecraft with Liquid [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  30. A. Pawell and R. B. Guenther, “A numerical solution to a free surface problem,” Topolog. Meth. Nonlin. Anal.: J. Juliusz Schauder Center, 6, 399–416 (1995).

    MATH  MathSciNet  Google Scholar 

  31. L. Perko, “Large-amplitude motion of liquid-vapor interface in an accelerating container,” J. Fluid Mech., 35, No. 1, 77–96 (1969).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 1, pp. 44–70, January, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limarchenko, O.S. Specific features of application of perturbation techniques in problems of nonlinear oscillations of a liquid with free surface in cavities of noncylindrical shape. Ukr Math J 59, 45–69 (2007). https://doi.org/10.1007/s11253-007-0004-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0004-5

Keywords

Navigation