Skip to main content
Log in

A general class of evolutionary equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Using observable quantities and state variable of a dynamical process, a general evolutionary equation is defined which unifies classical ordinary differential equations, partial differential equations, and hereditary systems of retarded and neutral type. Specific illustrations are given using transmission lines nearest-neighbor coupled at the boundary and the theory of heat transfer in solids. Some spectral theory for linearization of the equations is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence (1988).

    MATH  Google Scholar 

  2. J. K. Hale and S. J. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer, New York (1993).

    MATH  Google Scholar 

  3. J. K. Hale, L. Magalhães, and W. O. Oliva, “Dynamics in infinite dimensions,” Appl. Math. Sci., 47 (2002).

  4. J. K. Hale, “Theory of functional differential equations,” Appl. Math. Sci., 3 (1977).

  5. S.-N. Chow and J. Mallet-Paret, “Integral averaging and bifurcation,” J. Different. Equat., 26, 112–159 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel, and H.-O. Walther, “Delay equations: functional-, complex-and nonlinear analysis,” 110 (1995).

  7. J. Wu, “Theory and applications of partial functional differential equations,” Appl. Math. Sci., 119 (1996).

  8. V. E. Abolina and A. D. Myshkis, “Mixed problems for quasilinear hyperbolic systems in the plane,” Mat. Sb., 50(92), 423–442 (1960).

    MathSciNet  Google Scholar 

  9. J. Nagumo and M. Shimura, “Self-oscillation in a transmission line with a tunnel diode,” Proc. IRE, 49, 1281–1291 (1961).

    Article  Google Scholar 

  10. R. K. Brayton, “Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type,” Quart. Appl. Math., 24, 215–244 (1966).

    MATH  MathSciNet  Google Scholar 

  11. K. L. Cooke and D.W. Krumme, “Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations,” J. Math. Anal. Appl., 24, 372–387 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Lopes, Asymptotic Fixed Point Theorems and Forced Oscillations in Neutral Equations, Ph. D. Thesis., Providence RI (1973).

  13. J. Wu and H. Xia, “Self-sustained oscillations in a ring array of lossless transmission lines,” J. Different. Equat., 124, 247–278 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. K. Hale, “Synchronization through boundary conditions,” Adv. Time-Delay Systems (Lect. Notes Comput. Sci. Eng.), 38, 225–232 (2004).

    MathSciNet  Google Scholar 

  15. J. K. Hale, “Coupled oscillators on a circle,” Resenhas IME-USP, 1, 441–457 (1994).

    MATH  MathSciNet  Google Scholar 

  16. J. K. Hale, “Diffusive coupling, dissipation and synchronization,” J. Dynam. Different. Equat., 9, 1–50 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach (1961).

  18. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer (1981).

  19. A. Stokes, “Local coordinates around a limit cycle of functional differential equations applications,” 24, 153–177 (1977).

    MATH  MathSciNet  Google Scholar 

  20. J. K. Hale and M. Weedermann “On perturbations of delay-differential equations with periodic orbits,” J. Different. Equat., 197, 219–246 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. K. Hale and J. Scheurle, “Smoothness of bounded solutions of nonlinear evolution equations,” J. Different. Equat., 56, 142–163 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. D. Joseph and L. Preziosi “Heat waves,” Rev. Modern Phys., 61, 41–83 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  23. D. D. Joseph and L. Preziosi, “Addendum to heat waves,” Rev. Modern Phys., 62, 375–391 (1990).

    Article  MathSciNet  Google Scholar 

  24. Nunziato, Quart. Appl. Math., 29, 187 (1971).

    MATH  MathSciNet  Google Scholar 

  25. M. E. Gurtin and A. C. Pipkin, Arch. Ration. Mech. Anal., 31, 113 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Hino, S. Murakami, and T. Naito, “Functional differential equations with infinite delay,” Lect. Notes Math., 1473 (1991).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 2, pp. 268–288, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, J.K. A general class of evolutionary equations. Ukr Math J 59, 293–314 (2007). https://doi.org/10.1007/s11253-007-0020-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0020-5

Keywords

Navigation