Skip to main content
Log in

Generalized de Rham-Hodge complexes, the related characteristic Chern classes, and some applications to integrable multidimensional differential systems on Riemannian manifolds

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study the differential-geometric aspects of generalized de Rham-Hodge complexes naturally related to integrable multidimensional differential systems of the M. Gromov type, as well as the geometric structure of the Chern characteristic classes. Special differential invariants of the Chern type are constructed, their importance for the integrability of multidimensional nonlinear differential systems on Riemannian manifolds is discussed. An example of the three-dimensional Davey-Stewartson-type nonlinear integrable differential system is considered, its Cartan type connection mapping, and related Chern-type differential invariants are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Warner, Foundations of Differential Manifolds and Lie Groups, Academic Press, New York (1971).

    Google Scholar 

  2. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley, New York (1963, 1969), Vols 1, 2.

    MATH  Google Scholar 

  3. J. D. Moore, Lectures on Seiberg-Witten Invariants, 2nd Edition, Springer, New York (2001).

    Google Scholar 

  4. O. Ye. Hentosh, M. M. Prytula, and A. K. Prykarpatsky, Differential-Geometric Integrability Fundamentals of Nonlinear Dynamical Systems on Functional Manifolds, 2nd Revised Edition, Lviv University, Lviv (2006).

    Google Scholar 

  5. R. Abracham and J. Marsden, Foundations of Mechanics, Cummings, New York (1978).

    Google Scholar 

  6. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York (1978).

    MATH  Google Scholar 

  7. M. Gromov, Partial Differential Relations, Springer, New York (1986).

    MATH  Google Scholar 

  8. E. Cartan, Lecons sur Invariants Integraux, Hermann, Paris (1971).

    MATH  Google Scholar 

  9. A. K. Prykarpatsky and I. V. Mykytiuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer Acad. Publ. (1998).

  10. S. Sternberg, Lectures on Differential Geometry, Prentice Hall, USA (1956).

    Google Scholar 

  11. D. L. Blackmore, Y. A. Prykarpatsky, and R. V. Samulyak, “The integrability of Lie-invariant geometric objects generated by ideals in Garssmann algebras,” J. Nonlinear Math. Phys., 5, 54–67 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  12. N. N. Bogoliubov, Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “A generalized de Rham-Hodge theory of multidimensional Delsarte transformations of differential operators and its applications for nonlinear dynamic systems,” Phys. Part. Nuclei, 36, No. 1, 1110–1121 (2005).

    Google Scholar 

  13. Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “The multidimensional Delsarte transmutation operators, their differential-geometric structure, and applications. Pt 1,” Opusc. Math., 23, 71–80 (2003).

    MATH  MathSciNet  Google Scholar 

  14. A. M. Samoilenko, Y. A. Prykarpatsky, and A. K. Prykarpatsky, “The spectral and differential-geometric aspects of a generalized de Rham-Hodge theory related with Delsarte transmutation operators in multidimension and its applications to spectral and soliton problems,” Nonlinear Anal., 65, 395–432 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. S. Mishchenko and A. T. Fomenko, Introduction to Differential Geometry and Topology, Moscow University, Moscow (1983).

    Google Scholar 

  16. S. Donaldson, “An application of gauge theory to four-dimensional topology,” J. Different. Geom., 18, 279–315 (1983).

    MATH  MathSciNet  Google Scholar 

  17. R. Teleman, Elemente de Topologie si Varietati Diferentiabile, Romania, Bucuresti Publ. (1964).

    Google Scholar 

  18. S. S. Chern, Complex Manifolds, USA, Chicago Univ. Publ. (1956).

    Google Scholar 

  19. G. de Rham, “Sur la theorie des formes differentielles harmoniques,” Ann. Univ. Grenoble, 22, 135–152 (1946).

    Google Scholar 

  20. C. Godbillon, Geometrie Differentielle et Mechanique Analytique, Hermann, Paris (1969).

    MATH  Google Scholar 

  21. G. de. Rham, Varietes Differentielles, Hermann, Paris (1955).

    Google Scholar 

  22. I. V. Skrypnik, “Periods of A-closed forms,” Dokl. Akad. Nauk. USSR, 160, No. 4, 772–773 (1965).

    Google Scholar 

  23. I. V. Skrypnik, “Harmonic fields with singularities,” Ukr. Mat. Zh., 17, No. 4, 130–133 (1965).

    Article  MathSciNet  Google Scholar 

  24. Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “The de Rham-Hodge-Skrypnik theory of Delsarte transmutation operators in multidimension and its applications,” Rep. Math. Phys., 55, No. 3, 351–363 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. M. Samoilenko, A. K. Prykarpats’kii, and V. G. Samoylenko, “The structure of Darboux-type binary transformations and their applications in soliton theory,” Ukr. Mat. Zh., 55, No. 12, 1704–1723 (2003).

    MATH  Google Scholar 

  26. Y. B. Lopatyns’kyi, “Harmonic fields on Riemannian manifolds,” Ukr. Mat. Zh., 2, No. 1, 56–60 (1950).

    Google Scholar 

  27. Yu. M. Berezans’kyi, Expansions in Eigenfunctions of Selfadjoint Operators (in Russian), Nauk. Dumka, Kiev (1965).

    Google Scholar 

  28. F. A. Berezin and M. A. Shubin, Schrodinger Equation (in Russian), Moscow University, Moscow (1983).

    Google Scholar 

  29. J. Golenia, Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “The general differential-geometric structure of multidimensional Delsarte transmutation operators in parametric functional spaces and their applications in soliton theory. Pt 2,” Opusc. Math., 24, 71–83 (2004).

    MATH  MathSciNet  Google Scholar 

  30. I. C. Gokhberg and M. G. Krein, Theory of Volterra Operators in Hilbert Spaces and Its Applications (in Russian), Nauka, Moscow (1967).

    Google Scholar 

  31. Ya. V. Mykytiuk, “Factorization of Fredholm operators,” Math. Stud. (Proc. Lviv Math. Soc.), 20, No. 2, 185–199 (2003).

    Google Scholar 

  32. Yu. A. Mitropol’skii, N. N. Bogolyubov (jr.), A. K. Prykarpatsky, and V. Hr. Samoilenko, Integrable Dynamical Systems: Differential-Geometric and Spectral Aspects (in Russian), Nauk. Dumka, Kiev (1987).

    Google Scholar 

  33. V. Zakharov, S. Manakov, S. Novikov, and L. Pitaevskii, Theory of Solitons: Inverse Scattering Problem (in Russian), Nauka, Moscow (1980).

    MATH  Google Scholar 

  34. L. D. Faddeev and L. A. Takhtadjyan, Hamiltonian Approach to the Theory of Solitons (in Russian), Nauka, Moscow (1986).

    Google Scholar 

  35. L. P. Nizhnik, Inverse Scattering Problems for Hyperbolic Equations (in Russian), Naukova Dumka, Kiev (1991).

    MATH  Google Scholar 

  36. V. E. Zakharov, “Integrable systems in multidimensional spaces,” Lect. Notes Phys., 153, 190–216 (1982).

    Article  Google Scholar 

  37. V. B. Matveev and M. I. Salle, Darboux-Backlund Transformations and Applications, Springer, New York (1993).

    Google Scholar 

  38. A. M. Samoilenko and Y. A. Prykarpats’kyi, Algebraic-Analytic Aspects of Completely Integrable Dynamical Systems and Their Perturbations (in Ukrainian), Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev, 41 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 3, pp. 327–344, March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogolyubov, N.N., Prykarpats’kyi, A.K. Generalized de Rham-Hodge complexes, the related characteristic Chern classes, and some applications to integrable multidimensional differential systems on Riemannian manifolds. Ukr Math J 59, 361–378 (2007). https://doi.org/10.1007/s11253-007-0023-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0023-2

Keywords

Navigation