Abstract
We present two fundamental facts from the jet theory for Sobolev spaces W m, p. One of these facts is that the formal differentiation of the k-jets theory is compatible with the pointwise definition of Sobolev (m − 1)-jet spaces on regular subsets of the Euclidean spaces ℝn. The second result describes the Sobolev imbedding operator of Sobolev jet spaces increasing the order of integrability of Sobolev functions up to the critical Sobolev exponent.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
S. L. Sobolev, “On one theorem of functional analysis,” Mat. Sb., 46, 471–497 (1938).
S. L. Sobolev, Applications of Functional Analysis to Mathematical Physics (in Russian), Novosibirsk (1962).
O. P. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems, Wiley, New York (1978).
B. Bojarski and P. Hajłasz, “Pointwise inequalities for Sobolev functions and some applications,” Stud. Math., 106, 77–92 (1993).
P. Hajłasz, “Sobolev spaces on an arbitrary metric space,” Potential Anal., 5, 403–415 (1996).
B. Bojarski, P. Hajłasz, and P. Strzelecki, “Improved C k λ approximation of higher-order Sobolev functions in norm and capacity,” Indiana Univ. Math. J., 51, 507–540 (2002).
B. Bojarski, “Marcinkiewicz-Zygmund theorem and Sobolev spaces,” Special Volume in Honour of L. D. Kudryavtsev’s 80th Birthday, Fizmatlit, Moscow (2003).
F. C. Liu and W. S. Tai, “Approximate Taylor polynomials and differentiation of functions,” Top. Meth. Nonlinear Anal., 3, 189–196 (1994).
H. Whitney, “Analytic extensions of differentiable functions defined in closed sets,” Trans. Amer. Math. Soc., 36, 63–89 (1934).
H. Whitney, “Differentiable functions defined in closed sets. I,” Trans. Amer. Math. Soc., 36, 369–387 (1934).
A. Jonsson and H. Wallin, “Function spaces on subsets of R n,” Math. Repts., 2, No. 1 (1984).
B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, London (1967).
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970).
G. Glaeser, “Étude de quelques algèbres tayloriennes,” J. Anal. Math., 6, 1–124 (1958).
W. P. Ziemer, “Weakly differentiable functions. Sobolev spaces and functions of bounded variation,” Grad. Texts Math., 120 (1989).
B. Bojarski, “Pointwise characterization of Sobolev classes,” Proc. Steklov Inst. Math. (to appear).
B. Muckenhoupt and R. L. Wheeden, “Weighted norm inequalities for fractional integrals,” Trans. Amer. Math. Soc., 192, 261–274 (1974).
B. Bojarski, “Sharp maximal operators of fractional order and Sobolev imbedding inequalities,” Bull. Polish Acad. Sci. Math., 33, 7–16 (1985).
A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions,” Stud. Math., 44, 563–582 (1972).
R. A. de Vore and R. C. Sharpley, “Maximal functions measuring smoothness,” Mem. Amer. Math. Soc., 47, No. 293, (1984).
D. Swanson, “Pointwise inequalities and approximation in fractional Sobolev spaces,” Stud. Math., 149, 147–174 (2002).
P. Hajłasz and P. Koskela, “Sobolev met Poincaré,” Mem. Amer. Math. Soc., 145, No. 688 (2000).
B. Bojarski, “Remarks on Markov’s inequalities and some properties of polynomials,” Bull. Polish Acad. Sci. Math., 33, 355–365 (1985).
L. Hedberg, “On certain convolution inequalities,” Proc. Amer. Math. Soc., 36, 505–510 (1972).
P. Hajłasz and J. Kinnunen, “Hölder quasicontinuity of Sobolev functions on metric spaces,” Rev. Mat., 14, 601–622 (1998).
P. Hajłasz, P. Koskela, and H. Tuominen, Sobolev Extensions and Restriction, Preprint.
P. Shvartsman, Local Approximations and Intrinsic Characterizations of Spaces of Smooth Functions on Regular Subsets of R n, ArXiv: Math. FA/0601682.
H. Triebel, “A new approach to function spaces on quasimetric spaces,” Rev. Mat. Comput., 18, 7–48 (2005).
Author information
Authors and Affiliations
Additional information
Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 3, pp. 345–358, March, 2007.
Rights and permissions
About this article
Cite this article
Bojarski, B. Whitney’s jets for Sobolev functions. Ukr Math J 59, 379–395 (2007). https://doi.org/10.1007/s11253-007-0024-1
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11253-007-0024-1