Skip to main content
Log in

Reconstruction of the spectral type of limiting distributions in dynamical conflict systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We establish the conditions of reconstruction of pure spectral types (pure point, pure absolutely continuous, or pure singularly continuous spectra) in the limiting distributions of dynamical systems with compositions of alternative conflict. In particular, it is shown that the point spectrum can be reconstructed starting from the states with pure singularly continuous spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Koshmanenko, “Theorem on conflict for a couple of stochastic vectors,” Ukr. Mat. Zh., 55, No. 4, 555–560 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Koshmanenko, “The theorem of conflict for probability measures,” Math. Meth. Operat. Res., 59, No. 2, 303–313 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. V. D. Koshmanenko and N. V. Kharchenko, “Invariant points of a dynamical conflict system in the space of piecewise uniformly distributed measures,” Ukr. Mat. Zh., 56, No. 7, 927–938 (2004).

    MATH  MathSciNet  Google Scholar 

  4. V. Koshmanenko and N. Kharchenko, “Spectral properties of image measures after conflict interactions,” Theor. Stochast. Proc., 3–4, 74–81 (2004).

    MathSciNet  Google Scholar 

  5. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, “Spectral properties of image measures under infinite conflict interactions,” Positivity, 10, 39–49 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], Nat. Pedagogical Univ., Kyiv (1998).

    Google Scholar 

  7. M. G. Krein and V. A. Yavryan, “Functions of spectral shift appearing as a result of perturbations of a positive operator,” J. Oper. Theor., 6, 155–191 (1981).

    MathSciNet  Google Scholar 

  8. J. D. Murray, Mathematical Biology, Springer (2002).

  9. A. J. Jones, Game Theory: Mathematical Models of Conflict, Halsted Press, New York (1980).

    MATH  Google Scholar 

  10. G. Owen, Game Theory, Academic Press, San Diego (1995).

    Google Scholar 

  11. M. Barnslev, Fractals Everywhere, Academic Press (1988).

  12. S. Albeverio, M. Bodnarchyk, and V. Koshmanenko, “Dynamics of discrete conflict interactions between nonannihilating opponents,” Meth. Funct. Anal. Topol., 11, No. 4, 309–319 (2005).

    MATH  Google Scholar 

  13. M. V. Bodnarchuk, V. D. Koshmanenko, and I. V. Samoilenko, “Dynamics of conflict interaction between systems with internal structure,” Nelin. Kolyv., 9, No. 4, 435–450 (2006).

    Google Scholar 

  14. S. Albeverio, V. Koshmanenko, and I. Samoilenko, The Conflict Interaction Between Two Complex Systems. Cyclic Migration, Preprint No. 262, Bonn University, Bonn (2006).

    Google Scholar 

  15. M. Khan, Mahbubush Salam, and K. I. Takahashi, “Mathematical model of conflict and cooperation with nonannihilating multi-opponent,” J. Interdiscipl. Math., 9, No. 3, 459–473 (2006).

    MATH  Google Scholar 

  16. S. Albeverio, V. Koshmanenko, and G. Torbin, “Fine structure of the singular continuous spectrum,” Meth. Funct. Anal. Topol., 9, No. 2, 101–109 (2003).

    MATH  MathSciNet  Google Scholar 

  17. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, \(\tilde Q\)-Representation of Real Numbers and Fractal Probability Distributions, arcXiv:math, Preprint PR/03 08 007 vl 1, August (2003).

  18. S. Kakutani, “Equivalence of infinite product measures,” Ann. Math., 49, 214–224 (1948).

    Article  MathSciNet  Google Scholar 

  19. S. D. Chatterji, “Certain induced measures on the unit interval,” J. London Math. Soc., 38, 325–331 (1963).

    Article  Google Scholar 

  20. Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 6, pp. 771–784, June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshmanenko, V.D. Reconstruction of the spectral type of limiting distributions in dynamical conflict systems. Ukr Math J 59, 841–857 (2007). https://doi.org/10.1007/s11253-007-0054-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0054-8

Keywords

Navigation