Skip to main content
Log in

Isomonodromic deformations and the differential Galois theory

  • Brief Communications
  • Published:
Ukrainian Mathematical Journal Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We show how to use solution of the inverse problem of the differential Galois theory for the construction of isomonodromic deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. S. Varadarajan, “Group-theoretic aspects of linear meromorphic differential equations,” Dynam. Contin. Discrete Impuls. Syst., 5, No. 1–4, 341–349 (1999).

    MATH  MathSciNet  Google Scholar 

  2. R. C. Churchill, “Differential algebraic techniques in Hamiltonian dynamics,” in: Proc. of the Internat. Workshop on Differential Algebra and Related Topics (November 2000, New Brunswick, NY, USA), World Scientific, Singapore (2002), pp. 219–255.

    Google Scholar 

  3. A. A. Bolibrukh, “On the isomonodromic merging of Fuchs singularities,” Trudy Mat. Inst. Ros. Akad. Nauk., 221, 127–142 (1998).

    MathSciNet  Google Scholar 

  4. V. V. Golubev, Lectures on the Analytic Theory of Differential Equations [in Russian], Gostekhizdat, Moscow (1950).

    MATH  Google Scholar 

  5. R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei in Endlisch gelegene wesentlich singulären Stellen,” Math. Ann., 63, 301–321 (1907).

    Article  MathSciNet  Google Scholar 

  6. L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebeger Ordnung mit festen kritischen Punkten,” J. Reine Angew. Math., 141, 96–145 (1912).

    Google Scholar 

  7. E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York (1973).

    MATH  Google Scholar 

  8. J. Kovacic, “The inverse problem in the Galois theory of differential fields,” Ann. Math., 89, 583–608 (1969); 93, 269–284 (1971).

    Article  MathSciNet  Google Scholar 

  9. N. V. Grigorenko, “On the inverse problem of the Galois theory of differential fields,” Mat. Zametki, 28, 113–117 (1980).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 8, pp. 1131–1134, August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, N.V. Isomonodromic deformations and the differential Galois theory. Ukr Math J 59, 1253–1257 (2007). https://doi.org/10.1007/s11253-007-0084-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0084-2

Keywords