Skip to main content
Log in

On inverse problem for singular Sturm-Liouville operator from two spectra

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study an inverse problem with two given spectra for a second-order differential operator with singularity of the type \(\frac{2}{r} + \frac{{\ell (\ell + 1)}}{{r^2 }}\) (here, l is a positive integer or zero) at zero point. It is well known that two spectra {λ n } and {λ n } uniquely determine the potential function q(r) in the singular Sturm-Liouville equation defined on the interval (0, π]. One of the aims of the paper is to prove the generalized degeneracy of the kernel K(r, s). In particular, we obtain a new proof of the Hochstadt theorem concerning the structure of the difference \(\tilde q(r) - q(r)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Blokhintsev, Foundations of Quantum Mechanics [in Russian], Gostekhteorizdat, Moscow (1949); English translation: Reidel, Dordrecht (1964).

    Google Scholar 

  2. V. A. Fock, Fundamentals of Quantum Mechanics [in Russian], Leningrad University, Leningrad (1932).

    Google Scholar 

  3. B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  4. R. Courant and D. Hilbert, Methods of Mathematical Physics, New York (1953).

  5. M. Coz and P. Rochus, “Translation kernels for velocity dependent interaction,” J. Math. Phys., 18, No. 11, 2232–2240 (1977).

    Article  MathSciNet  Google Scholar 

  6. V. Y. Volk, “On inverse formulas for a differential equation with a singularity at x = 0,” Usp. Mat. Nauk, 8(56), 141–151 (1953).

    MATH  MathSciNet  Google Scholar 

  7. R. Kh. Amirov and S. Gulyaz, Proc. Eighth Int. Colloq. Different. Equat. (Plovdiv, Bulgaria, August 18–23, 1998), pp. 17–24.

  8. O. H. Hald, “Discontinuous inverse eigenvalue problems,” Commun. Pure Appl. Math., 37, 539–577 (1984).

    MATH  MathSciNet  Google Scholar 

  9. B. M. Levitan, “On the determination of the Sturm-Liouville operator from one and two spectra,” Izv. Akad. Nauk SSSR, Ser. Mat., 42, No. 1, 185–199 (1978).

    MATH  MathSciNet  Google Scholar 

  10. E. S. Panakhov, “The definition of differential operator with peculiarity in zero on two spectrum,” J. Spectral Theory Oper., 8, 177–188 (1987).

    MATH  MathSciNet  Google Scholar 

  11. R. Carlson, “Inverse spectral theory for some singular Sturm-Liouville problems,” J. Different. Equat., 106, 121–140 (1993).

    Article  MATH  Google Scholar 

  12. H. Hochstadt, “The inverse Sturm-Liouville problem,” Commun. Pure Appl. Math., 26, 715–729 (1973).

    MATH  MathSciNet  Google Scholar 

  13. A. M. Krall, “Boundary values for an eigenvalue problem with a singular potential,” J. Different. Equat., 45, 128–138 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Rundell and P. E. Sacks, “Reconstruction of a radially symmetric potential from two spectral sequences,” J. Math. Anal. Appl., 264, 354–381 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 1, pp. 132–138, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panakhov, E.S., Yilmazer, R. On inverse problem for singular Sturm-Liouville operator from two spectra. Ukr Math J 58, 147–154 (2006). https://doi.org/10.1007/s11253-006-0057-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0057-x

Keywords

Navigation