Skip to main content
Log in

Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Let \(\mathcal{M}^{(n)} \), n = 1, 2, ..., be the supercritical branching random walk in which the family sizes may be infinite with positive probability. Assume that a natural martingale related to \(\mathcal{M}^{(n)} \) converges almost surely and in the mean to a random variable W. For a large subclass of nonnegative and concave functions ƒ, we provide a criterion for the finiteness of \(\mathbb{E}\) Wf(W). The main assertions of the present paper generalize some results obtained recently in Kuhlbusch’s Ph.D. thesis as well as previously known results for the Galton-Watson processes. In the process of the proof, we study the existence of the ƒ-moments of perpetuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Rösler, “A fixed point theorem for distributions,” Stochast. Process. Appl., 42, 195–214 (1992).

    Article  MATH  Google Scholar 

  2. Q. Liu, “Fixed points of a generalized smoothing transformation and applications to the branching random walk,” Adv. Appl. Probab., 30, 85–112 (1998).

    Article  MATH  Google Scholar 

  3. A. M. Iksanov, “Elementary fixed points of the BRW smoothing transforms with infinite number of summands,” Stochast. Process. Appl., 114, 27–50 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. F. C. Kingman, “The first birth problem for an age-dependent branching process,” Ann. Probab., 3, 790–801 (1975).

    MATH  MathSciNet  Google Scholar 

  5. J. D. Biggins, “Martingale convergence in the branching random walk,” J. Appl. Probab., 14, 25–37 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  6. Q. Liu, “Sur une équation fonctionnelle et ses applications: une extension du thé orème de Kesten-Stigum concernant des processus de branchement,” Adv. Appl. Probab., 29, 353–373 (1997).

    Article  MATH  Google Scholar 

  7. R. Lyons, “A simple path to Biggins’ martingale convergence for branching random walk,” in: K. B. Athreya and P. Jagers (editors), Classical and Modern Branching Processes, Springer, Berlin (1997), pp. 217–221.

    Google Scholar 

  8. C. M. Goldie and R. A. Maller, “Stability of perpetuities,” Ann. Probab., 28, 1195–1218 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. S. Sgibnev, “On the existence of submultiplicative moments for the stationary distributions of some Markovian random walks,” J. Appl. Probab., 36, 78–85 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Alsmeyer and U. Rosler, “On the existence of θ-moments of the limit of a normalized supercritical Galton-Watson process,” J. Theor. Probab., 17, 905–928 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. M. Iksanov, “On some moments of the limit random variable for a normalized supercritical Galton-Watson process,” in: L. R. Velle (editor), Focus on Probability Theory, Nova Science Publishers, New York (2004), pp. 151–158.

    Google Scholar 

  12. J. D. Biggins, “Growth rates in the branching random walk,” Z. Wahrscheinlichkeitstheor. Verw. Geb., 48, 17–34 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  13. U. Rösler, V. A. Topchii, and V. A. Vatutin, “Convergence conditions for the weighted branching process,” Discrete Math. Appl., 10, 5–21 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Kuhlbusch, Moment Conditions for Weighted Branching Processes, PhD Thesis, Munster University, Munster (2004).

    MATH  Google Scholar 

  15. R. Hardy and S. C. Harris, Spine Proofs for L p -Convergence of Branching-Diffusion Martingales, Mathematics Preprint 0405, University of Bath, Bath (2004); available online at http://www.bath.ac.uk/∼ massch/Research/Papers/spine-Lp-cgce.pdf.

    Google Scholar 

  16. H. G. Kellerer, Ergodic Behaviour of Affine Recursions III: Positive Recurrence and Null Recurrence, Technical Reports, Mathematisches Institut Universität München, München (1992).

    Google Scholar 

  17. W. Vervaat, “On a stochastic difference equation and a representation of non-negative infinitely divisible random variables,” Adv. Appl. Probab., 11, 750–783 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. M. Goldie and R. Grubel, “Perpetuities with thin tails,” Adv. Appl. Probab., 28, 463–480 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. V. F. Araman and P. W. Glynn, Tail Asymptotics for the Maximum of Perturbed Random Walk, Preprint, New York University, New York (2004); available online at http://pages.stern.nyu.edu/∼varaman.

    Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York (1966).

    MATH  Google Scholar 

  21. A. K. Grinceviícius, “A random difference equation,” Lith. Math. J., 21, 302–306 (1981).

    Article  Google Scholar 

  22. R. Keener, “A note on the variance of a stopping time,” Ann. Statist., 15, 1709–1712 (1987).

    MATH  MathSciNet  Google Scholar 

  23. M. S. Sgibnev, “Submultiplicative moments of the supremum of a random walk with negative drift, ” Statist. Probab. Lett., 32, 377–383 (1997).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 4, pp. 451–471, April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iksanov, A.M., Rösler, U. Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities. Ukr Math J 58, 505–528 (2006). https://doi.org/10.1007/s11253-006-0082-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0082-9

Keywords

Navigation