Skip to main content
Log in

Natural boundary of random Dirichlet series

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

For the random Dirichlet series

$$\sum\limits_{n = 0}^\infty {X_n (\omega )e^{ - s\lambda _n } } (s = \sigma + it \in \mathbb{C}, 0 = \lambda _0 < \lambda _n \uparrow \infty )$$

whose coefficients are uniformly nondegenerate independent random variables, we provide some explicit conditions for the line of convergence to be its natural boundary a.s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge (1985).

    MATH  Google Scholar 

  2. C. D. Ryll-Nardzewski, “Blackwell’s conjecture on power series with random coefficients,” Stud. Math., 13, 30–36 (1953).

    MathSciNet  MATH  Google Scholar 

  3. P. Holgate, “The natural boundary problem for random power series with degenerate tail fields,” Ann. Probab., 11, 814–816 (1983).

    MathSciNet  MATH  Google Scholar 

  4. D. C. Su, “The natural boundary of some random power series,” Acta Math. Sci., 11, 463–470 (1991).

    Google Scholar 

  5. X. Q. Ding, “The singular points and Picard points of random Dirichlet series,” J. Math. (PRC), 18, 455–460 (1998).

    MATH  Google Scholar 

  6. S. Mandelbrojt, Dirichlet Series. Principles and Methods, Reidel, Dordrecht (1972).

    MATH  Google Scholar 

  7. J. R. Yu, Dirichlet Series and Random Dirichlet Series, Sci. Press, Beijing (1997).

    Google Scholar 

  8. D. L. Burkholder, “Independent sequence with the Stein property,” Ann. Math. Statist., 39, 1282–1288 (1968).

    MathSciNet  MATH  Google Scholar 

  9. Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer, Berlin-New York (1978).

    MATH  Google Scholar 

  10. J. Marcinkiewicz and A. Zygmund, “Sue les fonctions ind’ependantes,” Fund. Math., 29, 60–90 (1937).

    Google Scholar 

  11. R. F. Gundy, “The martingale version of a theorem of Marcinkiewicz and Zygmund,” Ann. Math. Statist., 38, 725–734 (1967).

    MathSciNet  MATH  Google Scholar 

  12. W. F. Stout, Almost Sure Convergence, Academic Press, New York (1974).

    MATH  Google Scholar 

  13. R. E. A. C. Paley and A. Zygmund, “On some series of functions (3),” Proc. Cambridge Phil. Soc., 28, 190–205 (1932).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 7, pp. 997–1005, July, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Xiao, Y. Natural boundary of random Dirichlet series. Ukr Math J 58, 1129–1138 (2006). https://doi.org/10.1007/s11253-006-0124-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0124-3

Keywords

Navigation