Skip to main content
Log in

Initial-value problem for the Bogolyubov hierarchy for quantum systems of particles

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We construct cumulant (semi-invariant) representations for a solution of the initial-value problem for the Bogolyubov hierarchy for quantum systems of particles. In the space of sequences of trace-class operators, we prove a theorem on the existence and uniqueness of a solution. We study the equivalence problem for various representations of a solution in the case of the Maxwell-Boltzmann statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, “Some consideration on the derivation of the nonlinear quantum Boltzmann equation,” J. Statist. Phys., 116, No. 1/4, 381–410 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, “A short review on the derivation of the nonlinear quantum Boltzmann equations,” in: Lect. Notes, Workshop “Mathematical Methods in Quantum Mechanics,” Bressanove (Italy), 2005.

  3. C. Bardos, F. Golse, and N. J. Mauser, “Weak coupling limit of the N-particle Schrödinger equation,” Math. Anal. Appl., 2, No. 7, 275–293 (2000).

    MathSciNet  Google Scholar 

  4. C. Bardos, F. Golse, A. Gottlieb, and N. Mauser, “Mean field dynamics of fermions and the time-dependent Hartree-Fock equation,” J. Math. Pures Appl., 82, 665–683 (2003).

    MathSciNet  MATH  Google Scholar 

  5. F. Golse, “The mean-field limit for the dynamics of large particle systems,” J. Equat. Deriv. Part., No. 9 (2003).

  6. F. Castella, “From the von Neumann equation to the quantum Boltzmann equation in a deterministic framework,” J. Statist. Phys., 104, No. 1/2, 387–447 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Erdös, “Derivation of macroscopic kinetic equations from microscopic quantum mechanics,” in: Lect. Notes, School Math. Georgiatech. (2001).

  8. L. Erdös and H.-T. Yau, “Derivation of the nonlinear Schrödinger equation from a many body Coulomb system,” Adv. Theor. Math. Phys., 5, 1169–1205 (2001).

    MathSciNet  MATH  Google Scholar 

  9. L. Erdös, M. Salmhofer, and H.-T. Yau, “On the quantum Boltzmann equation,” J. Statist. Phys., 116, No. 116, 367–380 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Arnold, “Self-consistence relaxation-time models in quantum mechanics,” Commun. Part. Different. Equat., 21, No. 3, 473–506 (1996).

    MATH  Google Scholar 

  11. H. Spohn, “Quantum kinetic equations,” in: M. Fannes, C. Maes, and A. Verbeure (editors), On Three Levels (Micro-, Meso-and Macro-Approaches in Physics), Plenum, New York (1994), pp 1–10.

    Google Scholar 

  12. N. N. Bogolyubov, Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems [in Ukrainian], Radyans’ka Shkola, Kyiv (1949).

    Google Scholar 

  13. D. Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems, Kluwer, Dordrecht (1995).

    Google Scholar 

  14. D. Ya. Petrina, “On solutions of the Bogolyubov kinetic equations. Quantum statistics,” Teoret. Mat. Fiz., 13, No. 3, 391–405 (1972).

    MathSciNet  Google Scholar 

  15. D. Ya. Petrina and A. K. Vidybida, “Cauchy problem for the Bogolyubov kinetic equations,” Tr. Mat. Inst. Akad. Nauk SSSR, 86, 370–378 (1975).

    MathSciNet  Google Scholar 

  16. J. Ginibre, “Some applications of functional integrations in statistical mechanics,” in: C. de Witt and R. Stord (editors), Statistical Mechanics and Quantum Field Theory, Gordon and Breach, New York (1971), pp. 329–427.

    Google Scholar 

  17. D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York (1969).

    MATH  Google Scholar 

  18. F. A. Berezin and M. A. Shubin, Schrödinger Equation [in Russian], Moscow University, Moscow (1983).

    MATH  Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).

    MATH  Google Scholar 

  20. R. Dautray and J. L. Lions, Evolution Problems, Springer, Berlin (2000).

    Google Scholar 

  21. V. I. Herasymenko and T. V. Ryabukha, “Cumulant representation of solutions of the BBGKY hierarchy of equations,” Ukr. Mat. Zh., 54, No. 10, 1313–1328 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 9, pp. 1175–1191, September, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herasymenko, V.I., Shtyk, V.O. Initial-value problem for the Bogolyubov hierarchy for quantum systems of particles. Ukr Math J 58, 1329–1346 (2006). https://doi.org/10.1007/s11253-006-0136-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0136-z

Keywords

Navigation