Skip to main content
Log in

Method of Generalized Moment Representations in the Theory of Rational Approximation (A Survey)

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We give a survey of the method of generalized moment representations introduced by Dzyadyk in 1981 and its applications to Padé approximations. In particular, some properties of biorthogonal polynomials are investigated and numerous important examples are given. We also consider applications of this method to joint Padé approximations, Padé–Chebyshev approximations, Hermite–Padé approximations, and two-point Padé approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Baker, Jr., and P. Graves-Morris, PadéApproximants [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  2. C. G. J. Jacobi, “Ñber die Darstellung einer Reihe gegebnerWerthe durch eine gebroche rationale Function,” J. Reine Angew. Math., 30, 127–156 (1846).

    Google Scholar 

  3. G. Frobenius, “Ñber Relationen zwischen den Näherungsbrüchen von Potenzreihen,” J. Reine Angew. Math., 90, 1–17 (1881).

    Google Scholar 

  4. H. Padé, “Sur la répresentation approchèe d'une fonction par des fractions rationelles,” Ann. l'Ecole Normale Supèr. (3), 9, Suppl., 3–93 (1892).

    Google Scholar 

  5. H. Padé, “Recherches sur la convergence des dèveloppements en fractions continues d'une certaine catègorie de fonctions,” Ann. l'Ecole Normale Sup´er.(3), 24, 341–400 (1907).

    Google Scholar 

  6. P. L. Chebyshev, Selected Mathematical Works [in Russian], Gostekhizdat, Moscow (1946).

    Google Scholar 

  7. T. J. Stieltjes, Recherches sur les Fractions Continues [Russian translation], DNTVU, Kiev (1936).

    Google Scholar 

  8. A. A. Markov, Selected Works on the Theory of Continued Fractions and the Theory of Functions Deviating Least from Zero [in Russian], Gostekhteoretizdat, Moscow (1948).

    Google Scholar 

  9. H. Hamburger, “Über eine Erweiterung des Stieltjessen Momentproblems. I–III,” Math. Ann., 81, 235–319 (1920), 82, 120–164, 168–187 (1921).

    Google Scholar 

  10. F. Hausdorff, “Summationsmethoden und Momentfolgen. I, II,” Math. Z., 9, 74–109, 280–299 (1921).

    Google Scholar 

  11. N. I. Akhiezer, Classical Moment Problem and Some Related Problems of Analysis [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  12. A. A. Gonchar, “On the convergence of Padè approximants,” Mat. Sb., 92, No. 1, 152–164 (1973).

    Google Scholar 

  13. A. A. Gonchar, “On the convergence of Padè approximants for certain classes of meromorphic functions,” Mat. Sb., 97, No. 4, 607–629 (1975).

    Google Scholar 

  14. E. A. Rakhmanov, “On the convergence of Padè approximants in classes of holomorphic functions,” Mat. Sb., 112, No. 2, 162–169 (1977).

    Google Scholar 

  15. E. A. Rakhmanov, “On asymptotics of the ratio of orthogonal polynomials. II,” Mat. Sb., 118, No. 1, 104–117 (1982).

    Google Scholar 

  16. K. N. Lungu, “On properties of functions related to the behavior of poles of Padè approximants,” Mat. Zametki, 29, No. 6, 843–848 (1981).

    Google Scholar 

  17. J. Gilewicz, “Story of rational approximation for the class of Stieltjes functions: from Stieltjes to recent optimal estimations of errors,” Ukr. Mat. Zh., 46, No. 7, 941–943 (1994).

    Google Scholar 

  18. Y. L. Luke, “On the error in Padè approximations for functions defined by Stieltjes integrals,” Comput. Math., 3, No. 4, 307–314 (1977).

    Google Scholar 

  19. G. A. Baker, “Best error bounds for Padè approximants to convergent series of Stieltjes,” J. Math. Phys., 10, 814–820 (1969).

    Google Scholar 

  20. W. Gautschi, “On Padè approximants associated with Hamburger series,” Calcolo, 20, No. 2, 814–820 (1983).

    Google Scholar 

  21. P. Wynn, “Upon the Padè table derived from a Stieltjes series,” SIAM J. Numer. Anal., 5, 805–834 (1968).

    Google Scholar 

  22. E. Hendriksen and H. van Rossum, “Moment methods in Padè approximation,” J. Approxim. Theory, 35, No. 3, 250–263 (1982).

    Google Scholar 

  23. E. Hendriksen and H. van Rossum, “Moment methods in Padè approximation: the unitary case,” J. Math. Anal. Appl., 104, No. 2, 512–525 (1984).

    Google Scholar 

  24. J. Nuttall and S. R. Singh, “Orthogonal polynomials and Padè approximants associated with a system of arcs,” J. Approxim. Theory, 21, No. 1, 1–42 (1977).

    Google Scholar 

  25. H. Stahl, “Orthogonal polynomials with complex-valued weight function. I, II,” Constr. Approxim., 2, No. 3, 225–251 (1986).

    Google Scholar 

  26. A. A. Gonchar, “On the convergence of generalized Padè approximants of meromorphic functions,” Mat. Sb., 98, No. 4, 564–577 (1975).

    Google Scholar 

  27. S. P. Suetin, “Inverse theorems on generalized Padè approximants,” Mat. Sb., 109, No. 4, 629–646 (1979).

    Google Scholar 

  28. S. P. Suetin, “On the Montessus de Ballore theorem for nonlinear Padè approximants and Faber series,” Dokl. Akad. Nauk SSSR, 253, No. 6, 1322–1325 (1980).

    Google Scholar 

  29. L. Karlberg, A Convergence Result for Generalized PadèApproximants, Preprint No. 4, Department of Mathematics, Umeå University, Umeå (1978).

  30. A. A. Gonchar and L. Giermo Lopes, “On the Markov theorem for multipoint Padè approximants,” Mat. Sb., 105, No. 4, 512–524 (1978).

    Google Scholar 

  31. V. N. Rusak, Rational Functions as an Apparatus of Approximation [in Russian], Belorussian University, Minsk (1979).

    Google Scholar 

  32. E. A. Rovba, “Rational interpolation of differentiable functions with rth derivative of bounded variation,” Vestsi Nats. Akad. Nauk Belarus., Ser. Fiz. -Mat. Navuk, No. 2, 8–13 (1999).

    Google Scholar 

  33. E. A. Rovba, “Interpolational rational functions of the Fejèr–Bernstein type,” Vestn. Belorus. Univ., Ser. 1, No. 2, 75–78 (1991).

    Google Scholar 

  34. L. I. Filozof, “Conditions for the convergence of multipoint Padè approximants,” in: Theory of Approximation of Functions and Its Applications [in Russian], Institute of Cybernetics, Ukrainian Academy of Sciences (1984), pp. 121–126.

  35. A. Magnus, “On the structure of the two-point Padè table,” Lect. Notes Math., 932, 176–193 (1982).

    Google Scholar 

  36. O. Njåstad, “A multi-point Padè approximation problem,” Lect. Notes Math., 1199, 263–268 (1986).

    Google Scholar 

  37. H. Wallin, “Convergence and divergence of multipoint Padè approximants of meromorphic functions,” Lect. Notes Math., 1105, 272–284 (1984).

    Google Scholar 

  38. C. Hermite, “FrSur la fonction exponentielle,” Oeuvres, 3, 151–181 (1873).

    Google Scholar 

  39. M. A. Angelesco, “FrSur deux extensions des fractions continues algebriques,” Comp. Rend. Acad. Sci. Paris, 168, 262–263 (1919).

    Google Scholar 

  40. K. Mahler, “Perfect systems,” Compos. Math., 19, 95–166 (1968).

    Google Scholar 

  41. J. Coates, “On the algebraic approximation of functions. I–III,” Indag. Math., 28, 421–461 (1966).

    Google Scholar 

  42. H. Jager, “A multidimensional generalization of the Padè table,” Indag. Math., 26, 192–249 (1964).

    Google Scholar 

  43. E. M. Nikishin, “On joint Padè approximants,” Mat. Sb., 113, No. 4, 499–518 (1986).

    Google Scholar 

  44. E. M. Nikishin, “On asymptotics of linear forms for joint Padè approximants,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 2, 33–41 (1986).

    Google Scholar 

  45. A. A. Gonchar and E. A. Rakhmanov, “On the convergence of joint Padè approximants for systems of Markov-type functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 26, 31–48 (1981).

    Google Scholar 

  46. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  47. A. I. Aptekarev, “On Padè approximants for the collection1F1(1,c;λįz) kį =1,” Vestn. Mosk. Univ., Mat. Mekh., No. 2, 58–62 (1981).

    Google Scholar 

  48. A. I. Aptekarev, “Asymptotics of polynomials of joint orthogonality in the Angelesco case,” Mat. Sb., 136, 56–84 (1988).

    Google Scholar 

  49. V. A. Kalyagin, “On one class of polynomials defined by two orthogonality relations,” Mat. Sb., 110, No. 4, 609–627 (1979).

    Google Scholar 

  50. V. Kaliaguine, “The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials,” JComput. Appl. Math., 65, 181–193 (1995).

    Google Scholar 

  51. V. I. Parusnikov, “Jacobi–Perron algorithm and joint approximation of functions,” Mat. Sb., 114, No. 2, 322–333 (1981).

    Google Scholar 

  52. M. G. de Bruin, “Some convergence results in simultaneous rational approximation to the set of hypergeometric functions {1 F 1(1;c i ;z)} n i=1 ,” Lect. Notes Math., 1071, 12–33 (1984).

    Google Scholar 

  53. M. G. de Bruin, “Some explicit formulae in simultaneous Padè approximation,” Lin. Alg. Its Appl., 63, Dec., 271–281 (1984).

    Google Scholar 

  54. M. G. de Bruin, “Simultaneous Padè approximation and orthogonality,” Lect. Notes Math., 1171, 74–83 (1985).

    Google Scholar 

  55. M. G. de Bruin, “Simultaneous rational approximation to some q-hypergeometric functions,” in: Nonlinear Numerical Methods and Rational Approximation, Reidel, Dordrecht (1988), pp. 135–142.

  56. M. G. de Bruin, K. A. Driver, and D. S. Lubinsky, “Convergence of simultaneous Hermite–Padè approximants to the n-tuple of q-hypergeometric series {1φ1( (1,1)c,03BB;j ; z)} n=1j=1 ,” Numerical Algorithms, 3, 185–192 (1992).

    Google Scholar 

  57. M. G. de Bruin, K. A. Driver, and D. S. Lubinsky, “Convergence of simultaneous Hermite–Pad´e approximants to the n-tuple of q-hypergeometric series {2φ0 ((A, αj), (1, 1); z)} n j=1 ,” J. Comput. Appl. Math., 49, 37–43 (1993).

    Google Scholar 

  58. G. V. Chudnovsky, “Padè approximation and the Riemann monodromy problem,” in: Bifurcation Phenomena in Mathematical Physics and Related Topics, Reidel, Dordrecht (1980), pp. 449–510.

  59. G. V. Chudnovsky, “Hermite–Padè approximations to exponential functions and elementary estimates of the measure of irrationality of π,” Lect. Notes Math., 925, 299–322 (1982).

    Google Scholar 

  60. J. Nuttall, “Hermite–Padè approximants to functions meromorphic on a Riemann surface,” J. Approxim. Theory, 32, No. 3, 233–240 (1981).

    Google Scholar 

  61. J. Nuttall, “Asymptotics of diagonal Hermite–Padè polynomials,” J. Approxim. Theory, 42, No. 4, 299–386 (1984).

    Google Scholar 

  62. B. Beckermann and G. Labahn, “A uniform approach for Hermite–Padè and simultaneous Padè approximants and their matrix-type generalizations,” Numerical Algorithms, 3,45–54 (1992).

    Google Scholar 

  63. V. K. Dzyadyk, “Approximation method for the approximation of solutions of linear differential equations by algebraic polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 38, No. 4, 937–967 (1974).

    Google Scholar 

  64. V. K. Dzyadyk, “A-method and rational approximation,” Ukr. Mat. Zh., 37, No. 3, 250–252 (1985).

    Google Scholar 

  65. V. K. Dzyadyk, Approximation Methods for the Solution of Differential and Integral Equations [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  66. V. I. Bilenko, V. N. Konovalov, I. A. Lukovskii, et al., “Dzyadyk approximation methods for the solution of differential and integral equations,” Ukr. Mat. Zh., 41, No. 4, 454–465 (1989).

    Google Scholar 

  67. V. K. Dzyadyk and L. I. Filozof, “On the rate of convergence of Padè approximants for certain elementary functions,” Mat. Sb., 107, No. 3, 347–363 (1978).

    Google Scholar 

  68. V. K. Dzyadyk, “On asymptotics of diagonal Padè approximants for the functions sin z, cos z, sinh z, and cosh z, “Mat. Sb., 108, No. 2, 247–267 (1979).

    Google Scholar 

  69. V. K. Dzyadyk, “On generalization of the moment problem,” Dokl. Akad. Nauk Ukr. SSR, No. 6, 8–12 (1981).

    Google Scholar 

  70. A. P. Holub, Generalized Moment Representations and Rational Approximations [in Russian], Preprint No. 87.25, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987).

    Google Scholar 

  71. V. K. Dzyadyk and A. P. Holub, Generalized Moment Problem and PadèApproximation [in Russian], Preprint No. 81.58, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 3–15.

    Google Scholar 

  72. D. Z. Arov, “Passive linear stationary dynamical systems,” Sib. Mat. Zh., 20, No. 2, 211–228 (1979).

    Google Scholar 

  73. M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables [Russian translation], Nauka, Moscow (1979).

    Google Scholar 

  74. A. P. Holub, Application of Generalized Moment Problem to PadèApproximation of Certain Functions [in Russian], Preprint No. 81.58, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 16–56.

  75. M. M. Dzhrbashyan, Integral Transformations and Representation of Functions in the Complex Plane [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  76. A. P. Holub, “On Padè approximation of the Mittag-Leffler function,” in: Theory of Approximation of Functions and Its Applications [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1984), pp. 52–59.

  77. M. N. Chyp, “Superdiagonal Padè approximation of the Mittag-Leffler-type function E 1/2(z; ), Reα> 0,” in: Some Problems in the Theory of Approximation of Functions [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1985), pp. 129–138.

  78. R. Walliser, “Rationale Approximation des q-Analogons der Exponentialfunktion und Irrationalitätsaussagen für diese Funktion,” Arch. Math., 44, No. 1, 59–64 (1985).

    Google Scholar 

  79. G. E. Andrews, The Theory of Partitions [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  80. A. P. Holub, “Generalized moment representations of basic hypergeometric series,” Ukr. Mat. Zh., 41, No. 6, 803–808 (1989).

    Google Scholar 

  81. H. Bateman and A. Erdèlyi, Higher Transcendental Functions [Russian translation], Vol. 1, Nauka, Moscow (1965).

    Google Scholar 

  82. F. H. Jackson, “Transformation of q-series,” Messenger Math., 39, 145–153 (1910).

    Google Scholar 

  83. E. Andrews and R. Askey, “Classical orthogonal polynomials,” Lect. Notes. Math., 1171, 36–62 (1985).

    Google Scholar 

  84. A. P. Holub, “On one type of generalized moment representations,” Ukr. Mat. Zh., 41, No. 11, 1455–1460 (1989).

    Google Scholar 

  85. A. P. Holub, “Generalized moment representations and Padè approximants,” in: Theory of Approximation of Functions and Its Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2000), pp. 144–160.

  86. A. P. Holub, “Generalized moment representations and Pad´e approximants associated with bilinear transformations,” in: “Theory of Approximations and Harmonic Analysis,” Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2001), p. 16.

  87. A. Iserles and S. P. Nørsett, “On the theory of bi-orthogonal polynomials,” Math. Comput., No. 1 (1986).

  88. C. Brezinski, Biorthogonality and Its Applications to Numerical Analysis, Marcel Dekker, New York (1992).

    Google Scholar 

  89. V. K. Dzyadyk, “Generalized moment problem and Padè approximation,” Ukr. Mat. Zh., 35, No. 3, 297–302 (1983).

    Google Scholar 

  90. A. P. Holub, “Some properties of biorthogonal polynomials,” Ukr. Mat. Zh., 41, No. 10, 1384–1388 (1989).

    Google Scholar 

  91. G. Castro and A. Seghier, “Recurrence relation for biorthogonal polynomials,” Comp. Rend. Acad. Sci. Paris, 324, No. 12, 1413–1418 (1997).

    Google Scholar 

  92. V. K. Dzyadyk, Introduction to the Theory of Uniform Polynomial Approximation of Functions [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  93. A. P. Holub, “Some properties of biorthogonal polynomials and their application to Padè approximations,” Ukr. Mat. Zh., 46, No. 8, 977–984 (1994).

    Google Scholar 

  94. A. P. Holub, “Generalized moment representations, biorthogonal polynomials, and Padè approximants,” Ukr. Mat. Zh., 46, No. 10, 1328–1335 (1994).

    Google Scholar 

  95. A. P. Holub, “Generalized moment representations and invariance properties of Padè approximants,” Ukr. Mat. Zh., 48, No. 3, 309–314 (1996).

    Google Scholar 

  96. H. van Rossum, “Systems of orthogonal and quasiorthogonal polynomials connected with the Padè table. I–III,” Proc. Kon. Ned. Akad. Wetensch. A, 58, No. 4, 517–534 (1955).

    Google Scholar 

  97. A. P. Holub, “Proof of the Padè and van Rossum theorems using generalized moment representations,” in: Some Problems in the Theory of Approximation of Functions and Their Applications [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989), pp. 37–43.

  98. A. P. Holub, “Integral equations of the convolution type and Padè approximants,” in: Investigations on the Theory of Approximation of Functions [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 21–23.

  99. Y. L. Luke, The Special Functions and Their Approximations, Vol. 2, Academic Press, New York (1992).

    Google Scholar 

  100. Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York (1975).

    Google Scholar 

  101. D. S. Lubinsky, “Uniform convergence of rows of the Padè table for functions with smooth MacLaurin series coefficients,” Constr. Approxim., 3, 307–330 (1987).

    Google Scholar 

  102. A. P. Holub, “On one system of biorthogonal polynomials and its applications,” Ukr. Mat. Zh., 41, No. 7, 961–965 (1989).

    Google Scholar 

  103. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  104. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Additional Chapters [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  105. A. P. Holub, “On joint Padè approximants for a collection of degenerate hypergeometric functions,” Ukr. Mat. Zh., 39, No. 6, 701–706 (1987).

    Google Scholar 

  106. A. P. Holub, “Convergence of denominators of joint Padè approximants for a collection of degenerate hypergeometric functions,” Ukr. Mat. Zh., 40, No. 6, 792–795 (1988).

    Google Scholar 

  107. A. P. Holub, “On joint Padè approximants for a collection of Mittag-Leffler-type functions,” in: Harmonic Analysis and Development of Approximation Methods [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989), pp. 38–42.

  108. A. P. Holub, “Generalized moment representations and Padè–Chebyshev approximants,” Ukr. Mat. Zh., 42, No. 6, 762–766 (1990).

    Google Scholar 

  109. A. P. Holub, “Padè–Chebyshev approximants for one class of functions,” Ukr. Mat. Zh., 54, No. 1, 15–19 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holub, A.P. Method of Generalized Moment Representations in the Theory of Rational Approximation (A Survey). Ukrainian Mathematical Journal 55, 377–433 (2003). https://doi.org/10.1023/A:1025821210408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025821210408

Keywords

Navigation