Skip to main content
Log in

States of Infinite Equilibrium Classical Systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We construct a measure that corresponds to the correlation functions of equilibrium states of infinite systems of classical statistical mechanics. The correlation functions satisfy the Bogolyubov compatibility conditions. We also construct measures that correspond to the correlation functions of nonequilibrium states of infinite systems for the Boltzmann hierarchy and the Bogolyubov–Strel'tsova diffusion hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Bogolyubov, Problems of a Dynamic Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946).

    Google Scholar 

  2. D. Ruelle, Statistical Mechanics. Rigorous Results [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  3. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  4. A. N. Kolmogorov, Foundations of the Theory of Probability [in Russian], ONTI, Moscow (1936).

    Google Scholar 

  5. N. N. Gikhman and A. V. Skorokhod, Theory of Random Processes [in Russian], Vol. 1, Nauka, Moscow (1971).

    Google Scholar 

  6. N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset, "Mathematical description of the equilibrium state of classical systems based on the canonical-ensemble formalism," Teor. Mat. Fiz., 1, 251–274 (1969).

    Google Scholar 

  7. D. Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics, Kluwer, Dordrecht (1995).

  8. C. Cercignani, V. I. Gerasimenko, and D. Ya. Petrina, Many-Particle Dynamics and Kinetic equations, Kluwer, Dordrecht (1997).

  9. W. I. Skrypnik, "On generalized Gibbs-type solutions of diffusion Bogolyubov – Strel'tsova hierarchy," Teor. Mat. Fiz., 58, No. 3, 398–420 (1984).

    Google Scholar 

  10. W. I. Skrypnik, "Correlation functions of infinite system of interacting Brownian particles; local in time evolution close to equilibrium," J. Stat. Phys., 35, No. 5/6, 587–602 (1985).

    Google Scholar 

  11. W. I. Skrypnik, "Mean-field limit in a generalized Gibbs system and an equivalent system of interacting Brownian particles," Teor. Mat. Fiz., 76, No. 1, 100–117 (1988).

    Google Scholar 

  12. R. A. Minlos, "Limit Gibbs distribution," Funkts. Anal. Prilozhen., 1, No. 2, 60–73 (1967).

    Google Scholar 

  13. R. A. Minlos, "Regularity of limit Gibbs distribution," Funkts. Anal. Prilozhen., 1, No. 3, 40–53.

  14. D. Ruelle, "States of classical statistical mechanics," J. Math. Phys., 8, No. 8, 1657–1668 (1966).

    Google Scholar 

  15. R. L. Dobrushin, "Description of a random field by conditional probabilities and conditions for its regularity," Teor. Ver. Primen., 13, No. 2, 201–229 (1968).

    Google Scholar 

  16. R. L. Dobrushin, "Gibbs fields. General Case," Funkts. Anal. Prilozhen., 3, No. 1, 27–35 (1969).

    Google Scholar 

  17. O. Lanford and D. Ruelle, "Observables at infinity and states with short range correlations in statistical mechanics," Commun. Math. Phys., 13, No. 3, 194–215 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrina, D.Y. States of Infinite Equilibrium Classical Systems. Ukrainian Mathematical Journal 55, 468–480 (2003). https://doi.org/10.1023/A:1025829412225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025829412225

Keywords

Navigation