Skip to main content
Log in

On Kolmogorov-Type Inequalities Taking into Account the Number of Changes in the Sign of Derivatives

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

For 2π-periodic functions \(x \in L_\infty ^r \) and arbitrary q ∈ [1, ∞] and p ∈ (0, ∞], we obtain the new exact Kolmogorov-type inequality \(|| x^(k) ||_q \leqslant (\frac{v(x^(k))}{2})^{1/q} \frac{|| \phi_{r-k} ||_q}{||| \phi_r |||_p^\alpha} ||| x |||_p^\alpha || x^(r) ||_\infty^{1- \alpha}, k, r \in N, k < r,\) which takes into account the number of changes in the sign of the derivatives ν(x (k)) over the period. Here, α = (rk + 1/q)/(r + 1/p), ϕ r is the Euler perfect spline of degree r, \(\begin{gathered} \left\| {\left| x \right|} \right\|_p : = {\text{sup}}_{a,b \in {\text{R}}} \{ E_0 (x)_{L_p [a,b]} :x'(t) \ne 0{\text{ }}\forall t \in (a,b)\} , \hfill \\ {\text{ }} \hfill \\ {\text{ }}E_0 (x)_{L_p [a,b]} : = {\text{ inf}}_{c \in {\text{R}}} \left\| {x - c} \right\|_{L_p [a,b]} , \hfill \\ \hfill \\ \left\| x \right\|_{L_p [a,b]} : = \left\{ {\int\limits_a^b {\left| {x(t)} \right|^p dt} } \right\}^{1/p} {\text{ for }}0 < p < \infty , \hfill \\ \end{gathered} \) and \(\left\| x \right\|_{L_p [a,b]} : = {\text{ sup vrai}}_{t \in \left[ {a,b} \right]} \left| {x(t)} \right|\). The inequality indicated turns into the equality for functions of the form x(t) = aϕ r (nt + b), a, bR, nN. We also obtain an analog of this inequality in the case where k = 0 and q = ∞ and prove new exact Bernstein-type inequalities for trigonometric polynomials and splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Pinkus and O. Shisha, “Variations on the Chebyshev and L q theories of best approximation,” J. Approxim. Theory, 35, 148-168 (1982).

    Google Scholar 

  2. B. E. Klots, “Approximation of differentiable functions by functions of higher order of smoothness,” Mat. Zametki, 21, No. 1, 21-32 (1977).

    Google Scholar 

  3. A. A. Ligun, “On inequalities between the norms of the derivatives of periodic functions,” Mat. Zametki, 33, No. 3, 385-391 (1983).

    Google Scholar 

  4. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact inequalities taking into account the number of changes in the sign of the derivatives,” Dopov. Nats. Akad. Nauk Ukr., No. 8, 12-16 (1998).

    Google Scholar 

  5. A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985).

  6. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

  7. V. N. Gabushin, “On some inequalities between the derivatives of functions,” Tr. IMM UNC Akad. Nauk SSSR, Issue 23, 20-26 (1976).

  8. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of Kolmogorov type and some their applications in approximation theory,” Rend. Circ. Math. Palermo, Ser. II, Suppl., 52, 223-237 (1998).

    Google Scholar 

  9. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities for norms of intermediate derivatives of periodic functions and their applications,” East J. Approxim., 3, No. 3, 351-376 (1997).

    Google Scholar 

  10. A. A. Ligun, “Inequalities for upper bounds of functionals,” Anal. Math., 2, No. 1, 11-40 (1976).

    Google Scholar 

  11. A. Zygmund, Trigonometric Series [Russian translation], Vol. II, Mir, Moscow (1965).

  12. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On the best approximation of Euler perfect splines in the spaces L p, 0 ??p < 1,” in: “Computer Modeling,” Dneprodzershinsk (2001), p. 9.

  13. L. V. Taikov, “A generalization of the S. N. Bernstein inequality,” Tr. Mat. Inst. Akad. Nauk SSSR, 78, 43-47 (1965).

    Google Scholar 

  14. V. M. Tikhomirov, “Widths of sets in functional spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81-120 (1960).

    Google Scholar 

  15. A. A. Ligun, “Exact inequalities for spline functions and the best quadrature formulas for certain classes of functions,” Mat. Zametki, 19, No. 6, 913-926 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofanov, V.A. On Kolmogorov-Type Inequalities Taking into Account the Number of Changes in the Sign of Derivatives. Ukrainian Mathematical Journal 55, 548–565 (2003). https://doi.org/10.1023/B:UKMA.0000010156.34711.7b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000010156.34711.7b

Keywords

Navigation