Skip to main content
Log in

Groups with Hypercyclic Proper Quotient Groups

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We continue the investigation of (solvable) groups all proper subgroups of which are hypercyclic. The monolithic case is studied completely; in the nonmonolithic case, however, one should impose certain additional conditions. We investigate groups all proper quotient groups of which possess supersolvable classes of conjugate elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. F. Newman, “On a class of metabelian groups,” Proc. London. Math. Soc. 10, 354-364 (1960).

    Google Scholar 

  2. M. F. Newman, “On a class of nilpotent groups,” Proc. London. Math. Soc. 10, 365-375 (1960).

    Google Scholar 

  3. D. McCarthy, “Infinite groups whose proper quotient groups are finite.I,”Commun. Pure Appl. Math., 21, 545-562 (1968).

    Google Scholar 

  4. D. McCarthy, “Infinite groups whose proper quotient groups are finite. II,” Commun. Pure Appl. Math., 23, 767-789 (1970).

    Google Scholar 

  5. J. S. Wilson, “Groups with every proper quotient finite,” Proc. Cambridge Phil. Soc., 69, 373-391 (1971).

    Google Scholar 

  6. S. Franciosi and F. de Giovanni, “Soluble groups with many nilpotent quotients,” Proc. Roy. Irish Acad. Sec. A., 89, 43-52 (1989).

    Google Scholar 

  7. L. A. Kurdachenko and I. Ya. Subbotin, “Groups whose proper quotients are hypercentral,” J.Austral. Math. Soc. A., 65, 224-237 (1998).

    Google Scholar 

  8. L. A. Kurdachenko and P. Soules, “Just-non-SRIgroups,” Proc. Second Panhellenic Conf. Algebra Number Theory, Bull. Greek Math. Soc., 42, 33–42, (1999).

    Google Scholar 

  9. L. A. Kurdachenko and P. Soules, “Groups with proper hypercyclic homomorphic images,” Ric. Mat., 50, No. 1, 59-65 (2001).

    Google Scholar 

  10. D. J. S. Robinson and Z. Zhang, “Groups whose proper quotients have finite derived subgroups,” J. Algebra, 118, 346-368 (1988).

    Google Scholar 

  11. S. Franciosi, F. de Giovanni, and L. A. Kurdachenko, “Groups whose proper quotients are FC-groups,” J. Algebra, 186, 544-577 (1996).

    Google Scholar 

  12. L. A. Kurdachenko and J. Otal, “Some Noetherian modules and nonmonolithic just-non-CCgroups,” J. Group Theory, 2, No. 1, 53-64 (1999).

    Google Scholar 

  13. L. A. Kurdachenko and J. Otal, “Simple modules over CC-groups and monolithic just-non-CC-groups,” Boll. Unione Mat. Ital., 4B, No. 8, 381-390 (2001).

    Google Scholar 

  14. L. A. Kurdachenko and J. Otal, “Groups all proper quotient groups of which have Chernikov conjugacy classes,” Ukr. Mat. Zh., 52, No. 3, 346-353 (2000).

    Google Scholar 

  15. S. Franciosi, F. de Giovanni, and M. J. Tomkinson, “Groups with polycyclic-by-finite conjugacy classes,” Boll. Unione Mat. Ital., 4B, No. 7, 35-55 (1990).

    Google Scholar 

  16. B. A. Wehfritz, Infinite Linear Groups, Springer, Berlin (1973).

    Google Scholar 

  17. D. I. Zaitsev, “Hypercyclic extensions of Abelian groups”, in: Groups Determined by Properties of Systems of Subgroups?[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1979), pp. 16-37?

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdachenko, L.A., Soules, P. Groups with Hypercyclic Proper Quotient Groups. Ukrainian Mathematical Journal 55, 566–575 (2003). https://doi.org/10.1023/B:UKMA.0000010157.64107.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000010157.64107.1d

Keywords

Navigation