Skip to main content
Log in

Smooth and Topological Equivalence of Functions on Surfaces

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We obtain conditions under which the Morse functions defined on surfaces are smooth equivalent and functions with isolated critical (singular) points are topologically equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Mappings [in Russian], Vol. 1, Nauka, Moscow (1982).

    Google Scholar 

  2. L. Bott, “Lectures on Morse theory,” Bull. Amer. Math. Soc., 7, 331–358 (1982).

    Google Scholar 

  3. A. O. Prishlyak, “Topological equivalence of smooth functions with isolated critical points on a closed surface,” Topology and its Appl., 119, 257–267 (2002).

    Google Scholar 

  4. V. A. Rokhlin and D. B. Fuks, Beginner's Course in Topology. Geometric Chapters, Springer, Berlin (1984).

    Google Scholar 

  5. J. Milnor, Morse Theory, Princeton University Press, Princeton, N.J., (1963).

    Google Scholar 

  6. E. A. Kudryavtseva, “On the realization of smooth functions on surfaces in the form of functions of height,” Mat. Sb., 190, No. 1 (1999).

    Google Scholar 

  7. V. V. Sharko, “Functions on surfaces. I,” in: Certain Topics of Modern Mathematics, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, Vol. 25 (1998), pp. 408–434.

    Google Scholar 

  8. V. V. Sharko, Functions on Manifolds [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  9. A. V. Bolsinov and A. T. Fomenko, Introduction to the Topology of Integrable Hamiltonian Systems [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  10. S. I. Maksimenko, “Classification of m-functions on surfaces,” Ukr. Mat. Zh., 51, No. 8, 1129–1135 (1999).

    Google Scholar 

  11. V. O. Manturov, “Atoms, higher atoms, chord diagrams, and knots. Counting atoms of low complexity by using Mathematica 3.0,” in: Topological Methods in the Theory of Hamiltonian Systems [in Russian], A. V. Bolsinov, A. T. Fomenko, and A. I. Shafarevich, eds., Faktorial, Moscow (1998), pp. 203–212.

    Google Scholar 

  12. A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Coding of singularities,” Proc. Steklov Inst. Math., 205, No. 4 (1995), 119–127.

    Google Scholar 

  13. V. V. Sharko, “On topological equivalence of Morse functions on surfaces,” in: “Low-Dimensional Group Theory” [in Russian], Chelyabinsk State University (1996), pp. 19–23.

  14. E. V. Kulinich, “On topologically equivalent Morse functions on surfaces,” Methods Funct. Anal. Topology, 4, No. 1 (1998), 59–64.

    Google Scholar 

  15. V. A. Vasiliev, Topology of Complements to Discriminants [in Russian], FAZIS, Moscow (1997).

    Google Scholar 

  16. S. V. Matveev and A. T. Fomenko, Algorithmic and Computer Methods in Three-Dimensional Topology [in Russian], Moscow Univ. Press (1991).

  17. A. S. Kronrod, “On functions of two variables,” Uspekhi Mat. Nauk, 5, No. 1 (1950), 24–134.

    Google Scholar 

  18. T. R. S. Walsh and A. B. Lehman, “Counting rooted maps by genus. I, II,” J. Combin. Theory B, 4, No. 1 (1972), 192–218 and 122–141.

    Google Scholar 

  19. R. Gori and M. Markus, “Counting non-isomorphic chord diagrams,” Theory Comput. Sci., 204 (1998), 55–73.

    Google Scholar 

  20. A. Stoimenov, “On the number of chord diagrams,” Discrete Math., 218, No. 1–3 (2000), 209–233.

    Google Scholar 

  21. A. Khruzin, “Enumeration of chord diagrams,” Arxiv: math. CO/008209, Preprint, 10 p.

  22. E. A. Girik, “On the existence of vector fields with a given set of singularities ofn a two-dimensional closed oriented manifold,” Ukr. Mat. Zh., 46, No. 12, 1706–1709 (1993).

    Google Scholar 

  23. D. Poltavec, “Equivalent polar Morse – Smale systems on two-dimensional manifolds of genus 3,” in: International Conference on Topology and Applications, Book of Abstracts, Kiev (1995), p. 29.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharko, V.V. Smooth and Topological Equivalence of Functions on Surfaces. Ukrainian Mathematical Journal 55, 832–846 (2003). https://doi.org/10.1023/B:UKMA.0000010259.21815.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000010259.21815.d7

Keywords

Navigation