Skip to main content
Log in

Almost-Everywhere Convergence and (o)-Convergence in Rings of Measurable Operators Associated with a Finite von Neumann Algebra

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study the relationship between (o)-convergence and almost-everywhere convergence in the Hermite part of the ring of unbounded measurable operators associated with a finite von Neumann algebra. In particular, we prove a theorem according to which (o)-convergence and almost-everywhere convergence are equivalent if and only if the von Neumann algebra is of the type I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. E. Segal, “A noncommutative extension of abstract integration,” Ann. Math., No. 57, 401-457 (1953).

    Google Scholar 

  2. W. E. Stinespring, “Integration theorems for gages and duality for unimodular groups,” Trans. Amer. Math. Soc., 90, 15-56 (1959).

    Google Scholar 

  3. S. Sankaran, “Stochastic convergence for operators,” Quart. J. Math., 2, No. 15, 97-102 (1964).

    Google Scholar 

  4. A. R. Padmanabhan, “Convergence in measure and related results in finite rings of operators,” Trans. Amer. Math. Soc., No. 128, 359-388 (1967).

    Google Scholar 

  5. F. J. Yeadon, “Convergence of measurable operators,” Proc. Cambridge Phil. Soc., No. 74, 257-268 (1973).

    Google Scholar 

  6. F. J. Yeadon, “Noncommutative L P-spaces,” Math. Proc. Cambridge Phil. Soc., No. 77, 91-102 (1975).

    Google Scholar 

  7. A. Paszkiewicz, “Convergence almost everywhere in W *-algebras,” Lect. Notes Math., 1136, 420-427 (1985).

    Google Scholar 

  8. A. Paszkiewicz, “Convergence in W *-algebras,” J. Fuct. Anal., 69, 143-154 (1986).

    Google Scholar 

  9. M. A. Muratov, “Convergence almost everywhere and in measure in a ring of measurable operators,” in: Mathematical Analysis and Geometry [in Russian], Tashkent University, Tashkent (1980), pp. 47-52.

    Google Scholar 

  10. M. A. Muratov, “Some problems of the convergence of sequences of unbounded operators associated with a finite von Neumann algebra,” in: Proceedings of the Ukrainian Mathematical Congress [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2002), pp. 161-175.

    Google Scholar 

  11. M. A. Muratov, “Order properties of convergent sequences of unbounded measurable operators affiliated to a finite von Neumann algebra,” Meth. Funct. Anal. Topol., 8, No. 3, 50-60 (2002).

    Google Scholar 

  12. V. I. Chilin, “Topological O *-algebras,” Funkts. Anal. Prilozhen., 14, Issue 1, 87-99 (1980).

    Google Scholar 

  13. B. Z. Vulikh, Introduction to the Theory of Semiordered Spaces [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  14. M. Takesaki, Theory of Operator Algebras. I, Springer, New York (1979).

    Google Scholar 

  15. S. Stratila and L. Zsido, Lectures on von Neumann Algebras, England Abacus Press (1975).

  16. T. Fack and H. Kosaki, “Generalized s-numbers of ?-measurable operators,” Pacif. J. Math., 123, 269-300 (1986).

    Google Scholar 

  17. T. A. Sarymsakov, Sh. A. Ayupov, D. Khadzhiev, and V. I. Chilin, Ordered Algebras [in Russian], Fan, Tashkent (1983).

  18. E. Nelson, “Notes on noncommutative integration,” J. Funct. Anal., No. 15, 103-116 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muratov, M.A., Chilin, V.I. Almost-Everywhere Convergence and (o)-Convergence in Rings of Measurable Operators Associated with a Finite von Neumann Algebra. Ukrainian Mathematical Journal 55, 1445–1456 (2003). https://doi.org/10.1023/B:UKMA.0000018006.89995.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000018006.89995.80

Keywords

Navigation