Skip to main content
Log in

On the Point Spectrum of Self-Adjoint Operators That Appears under Singular Perturbations of Finite Rank

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We discuss purely singular finite-rank perturbations of a self-adjoint operator A in a Hilbert space ℋ. The perturbed operators \(\tilde A\) are defined by the Krein resolvent formula \((\tilde A - z)^{ - 1} = (A - z)^{ - 1} + B_z \), Im z ≠ 0, where B z are finite-rank operators such that dom B z ∩ dom A = |0}. For an arbitrary system of orthonormal vectors \(\{ \psi _i \} _{i = 1}^{n < \infty } \) satisfying the condition span |ψ i } ∩ dom A = |0} and an arbitrary collection of real numbers \({\lambda}_i \in {\mathbb{R}}^1\), we construct an operator \(\tilde A\) that solves the eigenvalue problem \(\tilde A\psi _i = {\lambda}_i {\psi}_i , i = 1, \ldots ,n\). We prove the uniqueness of \(\tilde A\) under the condition that rank B z = n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Albeverio, W. Karwowski, and V. Koshmanenko, “Square power of singularly perturbed operators,” Math. Nachr., 173, 5-24 (1995).

    Google Scholar 

  2. S. Albeverio and V. Koshmanenko, “Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions,” Potential Anal., 11, 279-287 (1999).

    Google Scholar 

  3. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators and Solvable Schrödinger Type Equations, Cambridge Univ. Press, Cambridge (2000).

    Google Scholar 

  4. W. Karwowski, V. Koshmanenko, and S. Ota, “Schrödinger operator perturbed by operators related to null-sets,” Positivity, 77, No. 2, 18-34 (1998).

    Google Scholar 

  5. L. Nizhnik, “The singular rank-one perturbations of self-adjoint operators,” Meth. Funct. Anal. Topology, 7, No. 3, 54-66 (2001).

    Google Scholar 

  6. V. D. Koshmanenko, “On rank-one singular perturbations of self-adjoint operators,” Ukr. Mat. Zh., 43, No. 11, 1559-1566 (1991).

    Google Scholar 

  7. V. D. Koshmanenko, Singular Bilinear Forms in the Theory of Perturbations of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  8. V. D. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht (1999).

    Google Scholar 

  9. S. Albeverio and P. Kurasov, “Rank one perturbations, approximations and self-adjoint extensions,” J. Funct. Anal., 148, 152-169 (1997).

    Google Scholar 

  10. F. Gesztesy and B. Simon, “Rank-one perturbations at infinite coupling,” J. Funct. Anal., 128, 245-252 (1995).

    Google Scholar 

  11. M. G. Krein, “Theory of self-adjoint extensions of semibounded Hermite operators and its applications. I,” Mat. Sb., 20 (62), No. 3, 431-495 (1947).

    Google Scholar 

  12. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  13. S. Albeverio, W. Karwowski, and V. Koshmanenko, “On negative eigenvalues of generalized Laplace operator,” Repts Math. Phys., 45, No. 2, 307-325 (2000).

    Google Scholar 

  14. A. Alonso and B. Simon, “The Birman - Krein - Vishik theory of self-adjoint extensions of semibounded operators,” J. Operator Theory, 4, 251-270 (1980).

    Google Scholar 

  15. V. D. Koshmanenko and O. V. Samoilenko, “Singular perturbations of finite rank. Point spectrum,” Ukr. Mat. Zh., 49, No. 11, 1186-1212 (1997).

    Google Scholar 

  16. A. A. Posilicano, “Krein-like formula for singular perturbations of self-adjoint operators and applications,” J. Funct. Anal., 183, 109-147 (2001).

    Google Scholar 

  17. V. A. Derkach and M. M. Malamud, “General resolvents and the boundary value problem for Hermitian operators with gaps,” J. Funct. Anal., 95, 1-95 (1991).

    Google Scholar 

  18. J. F. Brasche, M. Malamud, and H. Neidhardt, “Weyl function and spectral properties of self-adjoint extensions,” Integral Equat. Operator Theory, 43, 264-289 (2002).

    Google Scholar 

  19. V. D. Koshmanenko, “A variant of the inverse negative eigenvalues problem in singular perturbation theory,” Meth. Funct. Anal. Topology, 8, No. 1, 49-69 (2002).

    Google Scholar 

  20. T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  21. A. I. Plesner, Spectral Theory of Linear Operators [in Russian], Nauka, Moscow (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudkin, M.E., Koshmanenko, V.D. On the Point Spectrum of Self-Adjoint Operators That Appears under Singular Perturbations of Finite Rank. Ukrainian Mathematical Journal 55, 1532–1541 (2003). https://doi.org/10.1023/B:UKMA.0000018014.09570.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000018014.09570.ef

Keywords

Navigation