Abstract
The convergence of polymer cluster expansions for correlation functions of general Gibbs oscillator-type systems and related nonequilibrium systems of Brownian oscillators is established. The initial states for the latter are Gibbsian. It is proved that the sequence of the constructed correlation functions of the nonequilibrium system is a generalized solution of a diffusion BBGKY-type hierarchy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
V. I. Skrypnik, “On polymer expansions for equilibrium systems of oscillators with ternary interaction,” Ukr. Mat. Zh., 53, No. 11, 1532-1544 (2001).
H. Kunz, “Analyticity and clustering properties of unbounded spin systems,” Commun. Math. Phys., 59, 53-69 (1978).
D. Ruelle, “Probability estimates for continuous spin systems,” Commun. Math. Phys., 50. 189-193 (1976).
W. Skrypnik, “Correlation functions of infinite systems of interacting Brownian particles. Local in time evolution close to equilibrium,” J. Statist. Phys., 35, No. 5/6, 587-602 (1985).
V. I. Skrypnik, “Sine-Gordon transformations in nonequilibrium systems of Brownian particles,” Ukr. Mat. Zh., 49, No. 10, 1404-1421 (1997).
H. Doss and G. Royer, “Processus de diffusion associe aux measures de Gibbs sur ℝZ d,” Z. Wahrscheinlichkeitstheor. verw. Geb., 46, 107-124 (1978).
G. Royer, “Processus de diffusion associe a certains mod`eles d'Ising a spin continus,” Z. Wahrscheinlichkeitstheor. verw. Geb., 46. 165-176 (1979).
J. Dimock, “A cluster expansion for stochastic lattice fields,” J. Statist. Phys., 58, No. 5/6, 1181-1207 (1990).
P. Cattiaux, S. Roelly, and H. Zessin, Characterization de Diffusions Comme Mesure de Gibbs et Consequences sur les Syst`emes Reversibles, Preprint 589/3/1993, Bielefeld (1993).
J. D. Deutschel, “Infinite-dimensional diffusion processes as Gibbs measures,” Probab. Theory. Rel. Fields., 76, 325-340 (1987).
B. Simon, Functional Integration and Quantum Physics, Academic Press, New York (1979).
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York (1975).
D. Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems, Kluwer, Dordrecht (1997).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Skrypnik, V.I. On Polymer Expansion for Gibbsian States of Nonequilibrium Systems of Interacting Brownian Oscillators. Ukrainian Mathematical Journal 55, 1639–1661 (2003). https://doi.org/10.1023/B:UKMA.0000022072.04603.d6
Issue Date:
DOI: https://doi.org/10.1023/B:UKMA.0000022072.04603.d6