Skip to main content
Log in

Spatially-Homogeneous Boltzmann Hierarchy as Averaged Spatially-Inhomogeneous Stochastic Boltzmann Hierarchy

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We introduce the stochastic dynamics in the phase space that corresponds to the Boltzmann equation and hierarchy and is the Boltzmann–Grad limit of the Hamiltonian dynamics of systems of hard spheres. By the method of averaging over the space of positions, we derive from it the stochastic dynamics in the momentum space that corresponds to the space-homogeneous Boltzmann equation and hierarchy. Analogous dynamics in the mean-field approximation was postulated by Kac for the explanation of the phenomenon of propagation of chaos and derivation of the Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems, Gordon and Breach, New York (1989).

    Google Scholar 

  2. C. Cercignani, V. I. Gerasimenko, and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer, Dordrecht (1997).

    Google Scholar 

  3. D. Ya. Petrina and K. D. Petrina, “Stochastic dynamics and Boltzmann hierarchy. I–III,” Ukr. Mat. Zh., 50, No. 2, 195–210; No. 3, 372–387; No. 4, 552–569 (1998).

    Google Scholar 

  4. M. Lampis, D. Ya. Petrina, and K. D. Petrina, “Stochastic dynamics as a limit of Hamiltonian dynamics of hard spheres,” Ukr. Mat. Zh., 51, No. 5, 614–635 (1999).

    Google Scholar 

  5. D. Ya. Petrina, “Methods for derivation of the stochastic Boltzmann hierarchy,” Ukr. Mat. Zh., 52, No. 4, 474–491 (2000).

    Google Scholar 

  6. M. Kac, “Foundations of kinetic theory,” in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. III (1955).

  7. M. Kac, Probability and Related Topics in the Physical Sciences, Wiley, New York (1959).

    Google Scholar 

  8. F. A. Grünbaum, “Propagation of chaos for the Boltzmann equation,” Arch. Rational Mech. Anal., 42, 323–345 (1971).

    Google Scholar 

  9. H. P. McKean, “A class of Markov processes associated with nonlinear parabolic equations,” Proc. Nat. Acad. Sci., 56, 1907–1911 (1966).

    Google Scholar 

  10. H. Tanaka, “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,” Z. Wahrscheinlichtkeitstheorie Verw. Gebiete., 46, 67–105 (1978).

    Google Scholar 

  11. A. S. Sznitman, “Equations de type de Boltzmann, spatialement homogenes,” Z. Wahrscheinlichtkeitstheorie Verw. Gebiete., 66, 559–592 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampis, M., Petrina, D.Y. Spatially-Homogeneous Boltzmann Hierarchy as Averaged Spatially-Inhomogeneous Stochastic Boltzmann Hierarchy. Ukrainian Mathematical Journal 54, 94–111 (2002). https://doi.org/10.1023/A:1019797604319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019797604319

Keywords

Navigation