Abstract
We study properties of a subclass of ORV functions introduced by Avakumović and provide their applications for the strong law of large numbers for renewal processes.
Similar content being viewed by others
REFERENCES
O. Klesov, Z. Rychlik, and J. Steinebach, “Strong limit theorems for general renewal processes,” Theory Probab. Math. Statist. (2002) (to appear).
A. Gut, O. Klesov, and J. Steinebach, “Equivalences in strong limit theorems for renewal counting processes,” Statist. Probab. Lett., 35, 381–394 (1997).
V.G. Avakumović “On an O-inverse theorem,” Rad Jugoslov. Akad. Znanosti Umjetnosti (Razreda MatematickoPrirodoslovnoga 79), 254, 167–186 (1936).
S. Aljanči;ć and D. Arandelović, “O-regularly varying functions,” Publ. Inst. Math. Nouvelle, Ser. 22, 36, 5–22 (1977).
D. Drasin and E. Seneta, “A generalization of slowly varying functions,” Proc. Amer. Math. Soc., 96, No. 3, 470–472 (1986).
J. Karamata, “A remark on the foregoing paper of Mr.V.Avakumović,” Rad Jugoslov. Akad. Znanosti Umjetnosti (Razreda Matematicko-Prirodoslovnoga 79), 254, 187–200 (1936).
N. K. Bari and S. B. Stechkin, “Best approximation and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).
J. Karamata, “Sur un mode de croissance régulieré,” Mathematica (Claj), 4, 38–53 (1930).
J. Karamata, “Sur un mode de croissance régulieré,” Bull. Soc. Math. France, 61, 55–62 (1933).
E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).
N. H. Bingham, C. M. Goldie, and J. T. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge (1987).
V. F. Gaposhkin, “Criteria of the strong law of large numbers for classes of stationary processes and homogeneous random fields,” Theory Probab. Appl., 22, No. 2, 295–319 (1977).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Buldygin, V.V., Klesov, O.I. & Steinebach, J.G. Properties of a Subclass of Avakumović Functions and Their Generalized Inverses. Ukrainian Mathematical Journal 54, 179–206 (2002). https://doi.org/10.1023/A:1020178327423
Issue Date:
DOI: https://doi.org/10.1023/A:1020178327423