Skip to main content

Advertisement

Log in

Properties of a Subclass of Avakumović Functions and Their Generalized Inverses

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study properties of a subclass of ORV functions introduced by Avakumović and provide their applications for the strong law of large numbers for renewal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Klesov, Z. Rychlik, and J. Steinebach, “Strong limit theorems for general renewal processes,” Theory Probab. Math. Statist. (2002) (to appear).

  2. A. Gut, O. Klesov, and J. Steinebach, “Equivalences in strong limit theorems for renewal counting processes,” Statist. Probab. Lett., 35, 381–394 (1997).

    Google Scholar 

  3. V.G. Avakumović “On an O-inverse theorem,” Rad Jugoslov. Akad. Znanosti Umjetnosti (Razreda MatematickoPrirodoslovnoga 79), 254, 167–186 (1936).

    Google Scholar 

  4. S. Aljanči;ć and D. Arandelović, “O-regularly varying functions,” Publ. Inst. Math. Nouvelle, Ser. 22, 36, 5–22 (1977).

    Google Scholar 

  5. D. Drasin and E. Seneta, “A generalization of slowly varying functions,” Proc. Amer. Math. Soc., 96, No. 3, 470–472 (1986).

    Google Scholar 

  6. J. Karamata, “A remark on the foregoing paper of Mr.V.Avakumović,” Rad Jugoslov. Akad. Znanosti Umjetnosti (Razreda Matematicko-Prirodoslovnoga 79), 254, 187–200 (1936).

    Google Scholar 

  7. N. K. Bari and S. B. Stechkin, “Best approximation and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).

    Google Scholar 

  8. J. Karamata, “Sur un mode de croissance régulieré,” Mathematica (Claj), 4, 38–53 (1930).

    Google Scholar 

  9. J. Karamata, “Sur un mode de croissance régulieré,” Bull. Soc. Math. France, 61, 55–62 (1933).

    Google Scholar 

  10. E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).

    Google Scholar 

  11. N. H. Bingham, C. M. Goldie, and J. T. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge (1987).

    Google Scholar 

  12. V. F. Gaposhkin, “Criteria of the strong law of large numbers for classes of stationary processes and homogeneous random fields,” Theory Probab. Appl., 22, No. 2, 295–319 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buldygin, V.V., Klesov, O.I. & Steinebach, J.G. Properties of a Subclass of Avakumović Functions and Their Generalized Inverses. Ukrainian Mathematical Journal 54, 179–206 (2002). https://doi.org/10.1023/A:1020178327423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020178327423

Keywords

Navigation