Abstract
For an arbitrary function \(w:\mathbb{R} \to \left[ {0,1} \right]\), we determine the general form of a linear continuous functional on the space C 0w . The criterion for denseness of polynomials in the space \(L_2 \left( {\mathbb{R},d\mu } \right)\) established by Hamburger in 1921 is extended to the spaces C 0w .
Similar content being viewed by others
REFERENCES
R.E. Edwards, Functional Analysis. Theory and Applications [Russian translation], Mir, Moscow (1969).
Yu. M. Berezans'kyi, G. F. Us, and Z. G. Sheftel', Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).
I. P. Natanson, Theory of Functions of Real Variables [in Russian], Nauka, Moscow (1974).
S. Bernstein, “Le probleme de l'approximation des fonctions continues sur tout l'axe reel at l'une de ses applications,” Bull. Math. France, 52, 399–410 (1924).
S. N. Mergelyan, “Weighted polynomial approximations,” Usp. Mat. Nauk, 11, 107–152, (1956).
P. Koosis, The Logarithmic Integral I, Cambridge University, Cambridge (1988).
C. Berg, “Moment problems and polynomial approximation,” Ann. Fac. Sci. Toulouse. Stieltjes Special Issue, 9–32 (1996).
A. Borichev and M. Sodin, “The Hamburger moment problem and weighted polynomial approximation on discrete subsets of the real line,” J. Anal. Math., 71, 219–264 (1998).
A. G. Bakan, “Polynomial density in L p (R 1, dµ) and representation of all measures which generate a determinate Hamburger moment problem,” in: M. Lassonde (editor), Approximation, Optimization and Mathematical Economics, Physica, Heidelberg (2001), pp. 37–46.
M. Sodin and P. Yuditskii, “Another approach to de Branges' theorem on weighted polynomial approximation,” in: Proceedings of the Ashkelon Workshop on Complex Function Theory, Israel Mathematical Conference (May 1996), American Mathematical Society, Providence, 11 (1997), pp. 221–227.
N. I. Akhiezer, “On weighted approximation of continuous functions on the entire numerical axis,” Usp. Mat. Nauk, 11, No. 4, 107–152 (1956).
L. Branges, “The Bernstein problem,” Proc. Amer. Math. Soc., 10, 825–832 (1959).
T. Holl, “Sur l'approximation polynomiale des fonctions contenues d'une variable,” in: Proc. 9th Congr. Math. Scand. (1939).
B. Ya. Levin, “Completeness of systems of functions, quasianalyticity, and subharmonic majorants,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR, 170, 102–156 (1989).
M. Riesz, “Sur le probleme des moments et le theoreme de Parseval correspondant,” Acta Litt. Acad. Sci. Szeged, 1, 209–225 (1923).
H. Hamburger, “Uber eine Erweiterung des Stieltjesschen Momentenproblems,” Math. Ann., 81, 235–319 (1920); 82, 120-164, 168- 187 (1921).
J. Shohat and J. Tamarkin, The Problem of Moments, American Mathematical Society, Providence, (1950).
H. H. Schaefer, Topological Vector Spaces [Russian translation], Mir, Moscow (1971).
M. G. Krein, “Main properties of conic sets in Banach spaces,” Dokl. Akad. Nauk SSSR, 28, 13–17 (1940).
W. K. Hayman and P. B. Kennedy, Subharmonic Functions [Russian translation], Mir, Moscow (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bakan, A.G. Criterion of Polynomial Denseness and General Form of a Linear Continuous Functional on the Space C 0w . Ukrainian Mathematical Journal 54, 750–762 (2002). https://doi.org/10.1023/A:1021627228761
Issue Date:
DOI: https://doi.org/10.1023/A:1021627228761