Abstract
For functions f ∈ L(R +), we define a modified strong dyadic integral J(f) ∈ L(R +) and a modified strong dyadic derivative D(f) ∈ L(R +). We establish a necessary and sufficient condition for the existence of the modified strong dyadic integral J(f). Under the condition \(\smallint _{R_ + }\) f(x)dx = 0, we prove the equalities J(D(f)) = f and D(J(f)) = f. We find a countable set of eigenfunctions of the operators J and D. We prove that the linear span L of this set is dense in the dyadic Hardy space H(R +). For the functions f ∈ H(R +), we define a modified uniform dyadic integral J(f) ∈ L ∞(R +).
Similar content being viewed by others
REFERENCES
P. L. Butzer and H. J. Wagner, “Walsh series and the concept of a derivative,” Appl. Anal., 3, No. 1, 29–46 (1973).
P. L. Butzer and H. J. Wagner, “A calculus for Walsh functions defined on R +,” in: Proc. Symp. Naval Res. Lab, (Washington, April 18-20, 1973), pp. 75–81.
J. Pal, “On the connection between the concept of a derivative defined on the dyadic field and the Walsh-Fourier transform,” Ann. Sci. Univ. Budapest. Sect. Math., 18, 49–54 (1975).
J. Pal, “On a concept of a derivative among functions defined on the dyadic field,” SIAM J. Math. Anal., 8, No. 3, 375–391 (1977).
F. Schipp, W. R. Wade, and P. Simon, Walsh Series, Akad. Kiado, Budapest (1990).
C. W. Onneweer, “Differentiation on p-adic on p-series field,” Lin. Spaces Approxim.: Int. Ser. Numer. Math., 40, 187–198 (1978).
C. W. Onneweer, “On the definition of dyadic differentiation,” Appl. Anal., 9, 267–278 (1979).
N. J. Fine, “The generalized Walsh functions,” Trans. Amer. Math. Soc., 69, 66–77 (1950).
B. I. Golubov, A. V. Efimov, and V. A Skvortsov, Walsh Series and Transforms. Theory and Applications [in Russian], Nauka, Moscow (1987).
B. I. Golubov, “On an analog of the Hardy inequality for the Fourier - Walsh transform,” Izv. Ros. Akad. Nauk, Ser. Mat., 65, No. 3, 3–14 (2001).
B. I. Golubov, “On the boundedness of dyadic Hardy and Hardy-Littlewood operators in the dyadic spaces H and BMO,” Anal. Math., 26, 287–298 (2000).
E. Hille and J. D. Tamarkin, “On the absolute integrability of Fourier transforms,” Fund. Math., 25, 329–352 (1935).
G. H. Hardy and J. E. Littlewood, “Some new properties of Fourier constants,” Math. Ann., 97, 159–209 (1926).
A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University, Cambridge (1959).
N. R. Ladhawala, “Absolute summability of Walsh -Fourier series,” Pacif. J. Math., 65, 103–108 (1976).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Golubov, B.I. On Modified Strong Dyadic Integral and Derivative. Ukrainian Mathematical Journal 54, 770–784 (2002). https://doi.org/10.1023/A:1021631329669
Issue Date:
DOI: https://doi.org/10.1023/A:1021631329669