Skip to main content
Log in

On Modified Strong Dyadic Integral and Derivative

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

For functions fL(R +), we define a modified strong dyadic integral J(f) ∈ L(R +) and a modified strong dyadic derivative D(f) ∈ L(R +). We establish a necessary and sufficient condition for the existence of the modified strong dyadic integral J(f). Under the condition \(\smallint _{R_ + }\) f(x)dx = 0, we prove the equalities J(D(f)) = f and D(J(f)) = f. We find a countable set of eigenfunctions of the operators J and D. We prove that the linear span L of this set is dense in the dyadic Hardy space H(R +). For the functions fH(R +), we define a modified uniform dyadic integral J(f) ∈ L (R +).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. L. Butzer and H. J. Wagner, “Walsh series and the concept of a derivative,” Appl. Anal., 3, No. 1, 29–46 (1973).

    Google Scholar 

  2. P. L. Butzer and H. J. Wagner, “A calculus for Walsh functions defined on R +,” in: Proc. Symp. Naval Res. Lab, (Washington, April 18-20, 1973), pp. 75–81.

  3. J. Pal, “On the connection between the concept of a derivative defined on the dyadic field and the Walsh-Fourier transform,” Ann. Sci. Univ. Budapest. Sect. Math., 18, 49–54 (1975).

    Google Scholar 

  4. J. Pal, “On a concept of a derivative among functions defined on the dyadic field,” SIAM J. Math. Anal., 8, No. 3, 375–391 (1977).

    Google Scholar 

  5. F. Schipp, W. R. Wade, and P. Simon, Walsh Series, Akad. Kiado, Budapest (1990).

    Google Scholar 

  6. C. W. Onneweer, “Differentiation on p-adic on p-series field,” Lin. Spaces Approxim.: Int. Ser. Numer. Math., 40, 187–198 (1978).

    Google Scholar 

  7. C. W. Onneweer, “On the definition of dyadic differentiation,” Appl. Anal., 9, 267–278 (1979).

    Google Scholar 

  8. N. J. Fine, “The generalized Walsh functions,” Trans. Amer. Math. Soc., 69, 66–77 (1950).

    Google Scholar 

  9. B. I. Golubov, A. V. Efimov, and V. A Skvortsov, Walsh Series and Transforms. Theory and Applications [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  10. B. I. Golubov, “On an analog of the Hardy inequality for the Fourier - Walsh transform,” Izv. Ros. Akad. Nauk, Ser. Mat., 65, No. 3, 3–14 (2001).

    Google Scholar 

  11. B. I. Golubov, “On the boundedness of dyadic Hardy and Hardy-Littlewood operators in the dyadic spaces H and BMO,” Anal. Math., 26, 287–298 (2000).

    Google Scholar 

  12. E. Hille and J. D. Tamarkin, “On the absolute integrability of Fourier transforms,” Fund. Math., 25, 329–352 (1935).

    Google Scholar 

  13. G. H. Hardy and J. E. Littlewood, “Some new properties of Fourier constants,” Math. Ann., 97, 159–209 (1926).

    Google Scholar 

  14. A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University, Cambridge (1959).

    Google Scholar 

  15. N. R. Ladhawala, “Absolute summability of Walsh -Fourier series,” Pacif. J. Math., 65, 103–108 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubov, B.I. On Modified Strong Dyadic Integral and Derivative. Ukrainian Mathematical Journal 54, 770–784 (2002). https://doi.org/10.1023/A:1021631329669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021631329669

Keywords

Navigation