Abstract
We obtain exact order estimates for the trigonometric widths of the classes \(B_{p,{\theta }}^\Omega\) of periodic functions of many variables in the space L q, 1 < p ≤ 2 ≤ q < p/(p − 1).
Similar content being viewed by others
REFERENCES
R. S. Ismagilov, “Widths of sets in linear normed spaces and approximation of functions by trigonometric polynomials,” Usp. Mat. Nauk, 29, No. 3, 161–178 (1974).
V. E. Maiorov, “On linear widths of Sobolev classes and chains of extremal spaces,” Mat. Sb., 113, No. 3, 437–463 (1980).
Y. Makovoz, “On trigonometric n-widths and their generalizations,” J. Approxim. Theory, 41, No. 4, 361–366 (1984).
É. S. Belinskii, “Approximation of periodic functions by a “floating” system of exponentials and trigonometric widths],” in: Investigations in the Theory of Functions of Many Real Variables [in Russian], Yaroslavl University, Yaroslavl (1984), pp. 10–24.
É. S. Belinskii, “Approximation of periodic functions of many variables by a “floating” system of exponentials and trigonometric widths,” Dokl. Akad. Nauk SSSR, 284, No. 6, 1294–1297 (1985).
V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178 (1986).
A. S. Romanyuk, “Trigonometric widths of the classes B r p,θ ??of functions of many variables in the space L q,” Ukr. Mat. Zh., 50, No. 8, 1089–1097 (1998).
Sun Yongsheng and Wang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,” Tr. Mat. Inst. RAN, 219, 356–377 (1997).
N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).
É. S. Belinskii and É. M. Galeev, “On the least value of norms of mixed derivatives of trigonometric polynomials with given number of harmonics,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 2, 3–7 (1991).
S. M. Nikol'skii, Approximation of Periodic Functions of Many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, (1934).
N. N. Pustovoitov, “Representation and approximation of periodic functions of many variables with given mixed modulus of continuity,” Anal. Math., 20, 35–48 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Stasyuk, S.A. Trigonometric Widths of the Classes B Ω p,θ of Periodic Functions of Many Variables. Ukrainian Mathematical Journal 54, 862–868 (2002). https://doi.org/10.1023/A:1021647800536
Issue Date:
DOI: https://doi.org/10.1023/A:1021647800536