Skip to main content
Log in

Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We say that \({\mathcal{A}}\) is a ring with duality for simple modules, or simply a DSM-ring, if, for every simple right (left) \({\mathcal{A}}\)-module U, the dual module U* is a simple left (right) \({\mathcal{A}}\)-module. We prove that a semiperfect ring is a DSM-ring if and only if it admits a Nakayama permutation. We introduce the notion of a monomial ideal of a semiperfect ring and study the structure of hereditary semiperfect rings with monomial ideals. We consider perfect rings with monomial socles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Nakayama, “On Frobeniusean algebras, I,” Ann. Math, 40, 611–633 (1939).

    Google Scholar 

  2. T. Nakayama, “On Frobeniusean algebras, II,” Ann. Math, 42, No. 1, 1–21 (1941).

    Google Scholar 

  3. F. Kasch, Modules and Rings, London Math. Soc. Monographs, Vol. 17, Academic Press (1982).

  4. C. Curtis and J. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York (1962).

    Google Scholar 

  5. B. Müller, “The structure of quasi-Frobenius rings,” Can. J. Math, 26, 1141–1151 (1974).

    Google Scholar 

  6. K. Oshiro and S. Rim, “On QF-rings with cyclic Nakayama permutations,” Osaka J. Math., 34, 1–19 (1997).

    Google Scholar 

  7. M. Yousif, “Rings and Nakayama permutations,” Commun. Algebra, 25, No. 12, 3787–3795 (1997).

    Google Scholar 

  8. B. L. Osofsky, “A generalization of quasi-Frobenius rings,” J. Algebra, 4, 373–387 (1966).

    Google Scholar 

  9. C. Faith, Algebra II. Ring Theory, Springer, Berlin (1976).

    Google Scholar 

  10. A. A. Tuganbaev, Semidistributive Modules and Rings, Kluwer, Dordrecht (1998).

    Google Scholar 

  11. D. S. Passman, The Algebraic Structure of Group Rings, Wiley, New York (1977).

    Google Scholar 

  12. I. G. Connell, “On the group ring,” Can. J. Math., 15, 650–685 (1962).

    Google Scholar 

  13. E. I. Zelmanov, “Semigroup algebras with identities,” Sib. Mat. Zh., 18, 787–798 (1977).

    Google Scholar 

  14. J. Okniński, Semigroup Algebras, Marcel Dekker, New York (1991).

    Google Scholar 

  15. J. Lambek, Lectures on Rings and Modules, Blaisdell, Toronto (1966).

    Google Scholar 

  16. B. Müller, “On semi-perfect rings,” Ill. J. Math., 14, 464–467 (1970).

    Google Scholar 

  17. N. M. Gubareni and V. V. Kirichenko, Rings and Modules, Czestochowa (2001).

  18. V. V. Kirichenko, Samir Valio, and Yu. V. Yaremenko, “Semiperfect rings and their quivers,” in: Infinite Groups and Related Algebraic Topics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1993), pp. 438–456.

    Google Scholar 

  19. V. V. Kirichenko and M. A. Khibina, “Semiperfect semidistributive rings,” in: Infinite Groups and Related Algebraic Topics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1993), pp. 457–480.

    Google Scholar 

  20. H. Bass, “Finitistic dimension and homological generalization of semi-primary rings,” Trans. Amer. Math. Soc., 95, 466–488 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokuchaev, M.A., Kirichenko, V.V. Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings. Ukrainian Mathematical Journal 54, 1112–1125 (2002). https://doi.org/10.1023/A:1022062325089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022062325089

Keywords

Navigation