Abstract
We consider the problem of extendability and existence of solutions of the equation g(t, x) = 0 on the maximum interval of their definition.
Similar content being viewed by others
REFERENCES
V. V. Stepanov, A Course in Differential Equations [in Russian], Mir, Moscow (1953).
L. S. Pontryagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1974).
P. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).
E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations [in Russian], Nauka, Moscow (1975).
Encyclopaedia of Mathematics [in Russian], Vol. 5, Sovetskaya Éntsiklopediya, Moscow (1985).
N. P. Erugin, Implicit Functions [in Russian], Leningrad University, Leningrad (1956).
É. Goursat, Cours D'Analyse Mathématique [Russian translation], Vol. 1, ONTI NKTP, Moscow (1936).
V. I. Zubov, “On the problem of existence and approximate representation of implicit functions,” Vestn. Leningrad. Univ. No. 19, 48–54 (1956).
S. M. Lozinskii, “Inverse functions, implicit functions, and the solution of equations,” Vestn. Leningrad. Univ. No. 7, 131–142 (1957).
L. Nirenberg, Topics in Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).
L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1984).
V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).
A. F. Izmailov, “Theorems on representation of families of nonlinear mappings and implicit-function theorems,” Mat. Zametki 67, Issue 1, 57–68 (2000).
A. V. Arutyunov, “ Implicit-function theorems and abnormal points,” Dokl. Ros. Akad. Nauk 368, No. 5, 586–589 (1999).
S. Reich, V. Khatskevich, and D. Shoikhet, “A global implicit-function theorem and fixed-point theorems for holomorphic mappings and semigroups,” Dokl. Ros. Akad. Nauk 347, No. 6, 743–745 (1996).
G. E. Shilov, Mathematical Analysis. Functions of Several Real Variables [in Russian], Nauka, Moscow (1972).
A. M. Samoilenko, M. O. Perestyuk, and I. O. Parasyuk, Differential Equations [in Ukrainian], Lybid', Kiev (1994).
B. V. Shabat, Introduction of Complex Analysis [in Russian], Vol. 1, Nauka, Moscow (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Samoilenko, V.H., Kaplun, Y.I. Existence and Extendability of Solutions of the Equation g(t, x) = 0. Ukrainian Mathematical Journal 53, 427–437 (2001). https://doi.org/10.1023/A:1012344305548
Issue Date:
DOI: https://doi.org/10.1023/A:1012344305548