Skip to main content
Log in

Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinity, and we establish estimates of this convergence in L. These results are used for obtaining estimates of the convergence of linear heat-transfer boundary conditions to Dirichlet ones as the heat-transfer coefficient tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gripenberg, S. O. Londen, and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge 1990.

    MATH  Google Scholar 

  2. W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.

    MATH  Google Scholar 

  3. K. Yosida, Functional Analysis, Grundlehren Math. Wiss. (1978).

  4. A. Friedman, “On integral equations of Volterra type,” J. Analysis Math., 11, 381–413 (1963).

    Article  MATH  Google Scholar 

  5. R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, Menlo-Park 1971.

    MATH  Google Scholar 

  6. E. Goursat, Cours d’Analyse Mathematique, Gauthier-Villars, Paris 1923.

    MATH  Google Scholar 

  7. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton 1946.

    MATH  Google Scholar 

  8. T. L. Saaty, Modem Nonlinear Equations, Dover, New York 1981.

    Google Scholar 

  9. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London 1959.

    Google Scholar 

  10. J. L. Fourier, “Sur le réfroidissement séculaire du globe terrestre,” in: Oeuvres de Fourier, Vol.2, Gauthier-Villars, Paris (1890), pp. 269–288.

    Google Scholar 

  11. G. Lamé, Leçons sur la Théorie Analytique de la Chaleur, Mallet-Bachelier, Paris (1861).

    Google Scholar 

  12. D. A. Tarzia, “Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases,” Math. Notae, 27, 145–156 (1979/1980).

    MathSciNet  Google Scholar 

  13. D. A. Tarzia, “Etude de l’inequation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases, I,” Boll. Unione Mat. Ital., 6, No. 1-B, 865–883 (1982).

    MathSciNet  Google Scholar 

  14. D. A. Tarzia, “Etude de l’inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases, II,” Boll. Unione Mat. Ital., 6, No. 2-B, 589–603 (1983).

    MathSciNet  Google Scholar 

  15. J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, Menlo-Park 1984.

    MATH  Google Scholar 

  16. R. Gorenflo and S. Vesella, “Abel integral equations,” Lect. Notes Math., 1461 (1991).

  17. K. Yosida, Lectures on Differential and Integral Equations, Interscience, New York 1960.

    MATH  Google Scholar 

  18. M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions, Dover, New York 1972.

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrone, L.R. Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems. Ukr Math J 52, 183–203 (2000). https://doi.org/10.1007/BF02529633

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529633

Keywords

Navigation