Abstract
We establish that, for the “majority” of entire functions of finite order, their generalized Phragmén–Lindelöf indicators are identically equal to constants.
Similar content being viewed by others
REFERENCES
H. Steinhaus, “Ñber die Wahrscheinlichkeit dafür, dass der Konvergenzreis einer Potenzreihe ihre natürliche Grence ist,” Math. Z., 31, 408–416 (1929).
R. E. A. C. Paley and A. Zygmund, “A note on analytic functions in the unit circle,” Proc. Cambridge Phil. Soc., 28, 266–272 (1932).
A. C. Offord, “The distribution of zeros of series whose coefficients are independent random variables,” Indian J. Math., 9, 175–196 (1967).
J.-P. Kahane, Random Functional Series [Russian translation], Mir, Moscow (1973).
P. V. Filevich, “On some classes of entire functions for which the Wiman–Valiron inequality can be almost surely improved,” Mat. Stud., Issue 6, 59–66 (1996).
P. V. Filevich, “Estimates of the Wiman–Valiron type for random entire functions,” Dopov. Akad. Nauk Ukr., No. 12, 41–43 (1997).
B. Ya. Levin, Distribution of Roots of Entire Functions [in Russian], Gostekhteoretizdat, Moscow (1956).
G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen,” Math. Z., 29, 549–640 (1929).
W. H. J. Fuchs, “Proof of a conjecture of G. Pólya concerning gap series,” Ill. J. Math., 7, 661–667 (1963).
J. Kühn, “Ñber das Wachstum reeler Potenzreihen mit weniger Vorzeichenwechseln und über das Wachstum ganzer Dirichlet-Reihen,” Mitt. Math. Semin. Giessen, 75, 1–77 (1967).
C. Ryll-Nardzewski, “D. Blackwell's conjecture on power series with random coefficients,” Stud. Math., 13, 30–36 (1953).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Filevich, P.V. On the Phragmén–Lindelöf Indicator for Random Entire Functions. Ukrainian Mathematical Journal 52, 1634–1637 (2000). https://doi.org/10.1023/A:1010465420612
Issue Date:
DOI: https://doi.org/10.1023/A:1010465420612