Skip to main content
Log in

On the Theory of Generalized Toeplitz Kernels

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

A new proof of the integral representation of the generalized Toeplitz kernels is given. This proof is based on the spectral theory of the corresponding differential operator that acts in the Hilbert space constructed from a kernel of this sort. A theorem on conditions that should be imposed on the kernel to guarantee the self-adjointness of the operator considered (i.e., the uniqueness of the measure in the representation) is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ju. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, AMS, Providence, RI (1968).

    Google Scholar 

  2. M. Cotlar and C. Sadosky, “On the Helson – Szegö theorem and related class of modified Toeplitz kernels,” in: Proc.Symp.Pure Math.AMS, 35, Part I, AMS, Providence, RI (1979), pp. 383–407.

    Google Scholar 

  3. M. Cotlar and C. Sadosky, “Prolongements des formes de Hankel généralisées en formes de Toeplitz,” C.R.Acad.Sci.Ser.I, 167–170 (1987).

  4. R. Arocena, “Generalized Toeplitz kernels and dilations of intertwining operators,” Integr.Equat.Operator Theory, 6, 759–778 (1983).

    Google Scholar 

  5. R. Arocena, “Generalized Toeplitz kernels and dilations of intertwining operators II: The continuous case,” Acta Sci.Math.(Szeged), 53, 123–137 (1989).

    Google Scholar 

  6. R. Arocena and M. Cotlar, “Dilation of generalized Toeplitz kernels and some vectorial moment and weighted problems,” Lect.Notes Math., 908, 169–188 (1982).

    Google Scholar 

  7. R. Bruzual, “Local semigroups of contractions and some applications to Fourier representations theorems,” Integr.Equat.Operator Theory, 10, 780–801 (1987).

    Google Scholar 

  8. R. Bruzual, “Representation of measurable positive definite generalized Toeplitz kernels in R,” Integr.Equat.Operator Theory, 29, 251–260 (1997).

    Google Scholar 

  9. R. Bruzual and M. Dominguez, “A proof of the continuous commutant lifting theorem,” in: Operator Theory and Related Topics (Proc.M.Krein Int.Conf., Odessa, Ukraine, August 18–22, 1997), Vol. 2, Birkhäuser, Basel (2000), pp. 83–89.

    Google Scholar 

  10. Yu. M. Berezansky, “Generalization of the Bochner theorem to expansions in eigenfunctions of partial differential equations,” Dokl.AN SSSR, 110, No.6, 893–896 (1956).

    Google Scholar 

  11. Yu. M. Berezansky, “Representation of positive-definite kernels in eigenfunctions of differential equations,” Mat.Sb., 47, No.2, 145–176 (1959).

    Google Scholar 

  12. Yu. M. Berezanskii, Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables, AMS, Providence, RI (1986).

    Google Scholar 

  13. Yu. M. Berezansky and Yu. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Kluwer, Dordrecht (1995).

    Google Scholar 

  14. Yu. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional Analysis, Birkhäuser, Basel (1996).

    Google Scholar 

  15. O. B. Chernobai, “On positive-definite Toeplitz kernels,” in: Abstracts of the VII Kravchuk International Scientific Conference (May 11–14, 2000), Kiev (2000), p. 391.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezansky, Y.M., Chernobai, O.B. On the Theory of Generalized Toeplitz Kernels. Ukrainian Mathematical Journal 52, 1661–1678 (2000). https://doi.org/10.1023/A:1010423019221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010423019221

Keywords