Abstract
We prove a convergence theorem and obtain asymptotic (as ε → 0) estimates for a solution of a parabolic initial boundary-value problem in a junction Ωε that consists of a domain Ω0 and a large number N 2 of ε-periodically located thin cylinders whose thickness is of order ε = O(N −1).
Similar content being viewed by others
REFERENCES
V. A. Marchenko and E. Ya. Khruslov, Boundary-Value Problems in Domains with Fine-Grained Boundary [in Russian], Naukova Dumka, Kiev (1974).
A. Bensoussan, J. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structure, North Nolland, Amsterdam (1978).
E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Springer, Berlin (1980).
N. S. Bakhvalov and G. P. Panasenko, Homogenization of Processes in Periodic Media [in Russian], Nauka, Moscow (1984).
O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical Problems of the Theory of Strongly Inhomogeneous Elastic Media [in Russian], Moscow University, Moscow (1990).
I. V. Skrypnik, Methods for Investigation on Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).
V.V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Averaging of Differential Operators [in Russian], Fizmatlit, Moscow (1993).
J. Sanchez-Hubert and E. Sanches-Palencia, Vibration and Coupling of Continuous Systems, Springer, Berlin (1989).
T. A. Mel'nik, “Homogenization of the Poisson equation in a thick periodic junction,” Z.Analysis ihre Anwendungen, 18, No.4, 953–975 (1999).
T. A. Mel'nik and S. A. Nazarov, “Asymptotics of a solution of the spectral Neumann problem in a domain of the ‘thick comb’ type,” Tr.Sem.Petrovsk., 19, 138–174 (1996).
T. A. Mel'nik, “Asymptotic analysis of a spectral problem in a periodic thick junction of type 3:2:1,” Math.Meth.Appl.Sci., 23, No.4, 341–346 (2000).
G. V. Suzikov and E. Ya. Khruslov, “On propagation of sound waves through thin channels in a reflecting layer,” Teor.Funkts.Funkts.Anal.Prilozh., 5, 35–49 (1976).
V. P. Kotlyarov and E. Ya. Khruslov, “On a limit boundary condition for a Neumann problem,” Teor.Funkts.Funkts.Anal.Prilozh., 10, 83–96 (1970).
O. A. Ladyzhenskaya, Boundary-Value Problems in Mathematical Physics [in Russian], Nauka, Moscow (1973).
V. P. Mikhailov, Partial Differential Equations [in Russian], Nauka, Moscow (1983).
S. A. Nazarov, “Junctions of domains of different limit dimensions with singular degeneration,” Tr.Sem.Petrovsk., 18, 1–78 (1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mel'nik, T.A. Homogenization of a Singularly Perturbed Parabolic Problem in a Thick Periodic Junction of the Type 3:2:1. Ukrainian Mathematical Journal 52, 1737–1748 (2000). https://doi.org/10.1023/A:1010483205109
Issue Date:
DOI: https://doi.org/10.1023/A:1010483205109