Skip to main content
Log in

On certain nonlinear pseudoparabolic variational inequalities without initial conditions

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider a nonlinear pseudoparabolic variational inequality in a tube domain semibounded in variablet. Under certain conditions imposed on coefficients of the inequality, we prove the theorems of existence and uniqueness of a solution without any restriction on its behavior ast→−∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Barenblat, Yu. P. Zheltov, and I. N. Kochina, “On basic representations of the theory of filtration of homogeneous fluids in cracked rocks,”Prikl. Mat. Mekh.,24, Issue 3, 852–864 (1960).

    Google Scholar 

  2. L. I. Rubinshtein, “On the process of heat transfer in heterogeneous media,”Izv. Akad. Nauk SSSR. Ser. Geograf. Geofiz.,12, No. 1, 27–45 (1948).

    MathSciNet  Google Scholar 

  3. A. F. Chudnovskii,Thermal Physics of Soils [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  4. M. Majchrovski, “On inverse problems with nonlocal conditions for parabolic systems of partial differential equations and pseudoparabolic equations,”Demonstr. Math.,26, No. 1, 255–275 (1993).

    Google Scholar 

  5. T. W. Ting, “Parabolic and pseudoparabolic partial differential equations,”J. Math. Soc. Jpn.,21, No. 3, 440–453 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Gajewski, K. Gröger, and K. Zacharias,Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).

    MATH  Google Scholar 

  7. V. R. Gopala Rao and T. W. Ting, “Initial-boundary value problems for pseudoparabolic partial differential equations,”Indiana Univ. Math. J.,23, No. 2, 131–153 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. E. Showalter, “Partial differential equations of Sobolev-Galpern type,”Pacif. J. Math.,31, No. 3, 787–793 (1969).

    MATH  MathSciNet  Google Scholar 

  9. W. Rundel, “The solution of initial-boundary value problem for pseudoparabolic partial differential equations,”Proc. Roy. Soc. Edinburgh,A 74 311–326 (1976).

    Google Scholar 

  10. D. Colton, “Pseudoparabolic equations in one space variable,”J. Different. Equat.,12, No. 3, 559–565 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. V. Suveika, “Mixed problems for a nonstationary equation,”Mat. Issled., No. 58, 99–123 (1980).

    MathSciNet  Google Scholar 

  12. M. Kh. Shkhanukov, “On some boundary-value problems for third-order equations arising on the modelling of fluid filtration in porous media,”Differents. Uravn.,18, No. 10, 689–699 (1982).

    MATH  MathSciNet  Google Scholar 

  13. J. P. Cannon, and Lin Jamping, “Classical and weak solution for one-dimensional pseudoparabolic equations with typical boundary data,”Ann Mat. Pure Appl., No. 152, 375–389 (1988).

    Article  MATH  Google Scholar 

  14. M. O. Bas, and S. P. Lavrenyuk, “On the uniqueness of a solution of the Fourier problem for a system of Sobolev-Galpern type,”Ukr. Mat. Zh.,48, No. 1, 124–128 (1996).

    MathSciNet  Google Scholar 

  15. M. O. Bas, and S. P. Lavrenyuk,The Fourier Problem for a Nonlinear Pseudoparabolic System [in Russian], Dep. at GPNTB of Ukraine No. 2017-Uk.95, Kiev (1995).

    Google Scholar 

  16. J.-L. Lions,Quelques Méthodes de Resolution des Problémes aux Limites Non Linéaires [Russian translation], Mir, Moscow (1972).

    MATH  Google Scholar 

  17. A. A. Pankov,Bounded and Almost Periodic Solutions of Nonlinear Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  18. S. P. Lavrenyuk, “Parabolic variational inequalities without initial conditions,”Differents. Uravn.,32, No. 10, 1–5 (1996).

    MathSciNet  Google Scholar 

  19. S. P. Lavrenyuk and M. B. Ptashnyk, “Pseudoparabolic variational inequalities without initial conditions,” Ukr. Mat. Zh.50, No. 7, 919–929 (1998).

    Article  MathSciNet  Google Scholar 

  20. N. M. Bokalo, “On the problem without initial conditions for some classes of nonlinear parabolic equations”,Tr. Sem. Petrovskogo, Issue 14, 3–44 (1989).

    MATH  Google Scholar 

Download references

Authors

Additional information

Lvov University, Lvov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 3, pp. 328–337, March, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrenyuk, S.P., Ptashnyk, M.B. On certain nonlinear pseudoparabolic variational inequalities without initial conditions. Ukr Math J 51, 366–376 (1999). https://doi.org/10.1007/BF02592474

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592474

Keywords