Abstract
We consider a nonlinear pseudoparabolic variational inequality in a tube domain semibounded in variablet. Under certain conditions imposed on coefficients of the inequality, we prove the theorems of existence and uniqueness of a solution without any restriction on its behavior ast→−∞.
Similar content being viewed by others
References
G. I. Barenblat, Yu. P. Zheltov, and I. N. Kochina, “On basic representations of the theory of filtration of homogeneous fluids in cracked rocks,”Prikl. Mat. Mekh.,24, Issue 3, 852–864 (1960).
L. I. Rubinshtein, “On the process of heat transfer in heterogeneous media,”Izv. Akad. Nauk SSSR. Ser. Geograf. Geofiz.,12, No. 1, 27–45 (1948).
A. F. Chudnovskii,Thermal Physics of Soils [in Russian], Nauka, Moscow (1976).
M. Majchrovski, “On inverse problems with nonlocal conditions for parabolic systems of partial differential equations and pseudoparabolic equations,”Demonstr. Math.,26, No. 1, 255–275 (1993).
T. W. Ting, “Parabolic and pseudoparabolic partial differential equations,”J. Math. Soc. Jpn.,21, No. 3, 440–453 (1969).
H. Gajewski, K. Gröger, and K. Zacharias,Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).
V. R. Gopala Rao and T. W. Ting, “Initial-boundary value problems for pseudoparabolic partial differential equations,”Indiana Univ. Math. J.,23, No. 2, 131–153 (1973).
R. E. Showalter, “Partial differential equations of Sobolev-Galpern type,”Pacif. J. Math.,31, No. 3, 787–793 (1969).
W. Rundel, “The solution of initial-boundary value problem for pseudoparabolic partial differential equations,”Proc. Roy. Soc. Edinburgh,A 74 311–326 (1976).
D. Colton, “Pseudoparabolic equations in one space variable,”J. Different. Equat.,12, No. 3, 559–565 (1972).
I. V. Suveika, “Mixed problems for a nonstationary equation,”Mat. Issled., No. 58, 99–123 (1980).
M. Kh. Shkhanukov, “On some boundary-value problems for third-order equations arising on the modelling of fluid filtration in porous media,”Differents. Uravn.,18, No. 10, 689–699 (1982).
J. P. Cannon, and Lin Jamping, “Classical and weak solution for one-dimensional pseudoparabolic equations with typical boundary data,”Ann Mat. Pure Appl., No. 152, 375–389 (1988).
M. O. Bas, and S. P. Lavrenyuk, “On the uniqueness of a solution of the Fourier problem for a system of Sobolev-Galpern type,”Ukr. Mat. Zh.,48, No. 1, 124–128 (1996).
M. O. Bas, and S. P. Lavrenyuk,The Fourier Problem for a Nonlinear Pseudoparabolic System [in Russian], Dep. at GPNTB of Ukraine No. 2017-Uk.95, Kiev (1995).
J.-L. Lions,Quelques Méthodes de Resolution des Problémes aux Limites Non Linéaires [Russian translation], Mir, Moscow (1972).
A. A. Pankov,Bounded and Almost Periodic Solutions of Nonlinear Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1985).
S. P. Lavrenyuk, “Parabolic variational inequalities without initial conditions,”Differents. Uravn.,32, No. 10, 1–5 (1996).
S. P. Lavrenyuk and M. B. Ptashnyk, “Pseudoparabolic variational inequalities without initial conditions,” Ukr. Mat. Zh.50, No. 7, 919–929 (1998).
N. M. Bokalo, “On the problem without initial conditions for some classes of nonlinear parabolic equations”,Tr. Sem. Petrovskogo, Issue 14, 3–44 (1989).
Additional information
Lvov University, Lvov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 3, pp. 328–337, March, 1999.
Rights and permissions
About this article
Cite this article
Lavrenyuk, S.P., Ptashnyk, M.B. On certain nonlinear pseudoparabolic variational inequalities without initial conditions. Ukr Math J 51, 366–376 (1999). https://doi.org/10.1007/BF02592474
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02592474