Abstract
We establish conditions for existence and uniqueness of nonnegative solutions of nonlinear stationary heat-conduction problems, the Dirichlet, problem and the Neumann one, with regard for the dependence of the heat-conduction coefficient and inner heat sources on temperature.
References
A. A. Berezovskii,Lectures on Nonlinear Boundary-Value Problems of Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1974).
A. A. Berezovskii,Nonlinear Boundary-Value Problems of a Heat-Radiating Body [in Russian], Naukova Dumka., Kiev (1968).
A. A. Berezovskii, Yu. V. Zhernovyi, and M. T. Saichuk, “Simulation of a stationary thermal regime in an autocrucible during electron-beam lining-slag melting,”Teplofiz. Vysokikh Temp.,34, No. 1, 125–133 (1996).
O. A. Ladyzhenskaya and N. N. Ural'tseva,Linear and Quasilinear Elliptic Equations [in Russian], Nauka, Moscow (1973).
S. L. Sobolev,Equations of Mathematical Physics [in Russian], Gostekhteorizdat, Moscow-Leningrad (1950).
V. Ya. Arsenin,Methods of Mathematical Physics and Special Functions [in Russian], Nauka, Moscow (1974).
V. I. Smirnov,Course of Higher Mathematics [in Russian], Vol. 4, Part II, Nauka, Moscow (1981).
C. Miranda,Elliptic Partial Differential Equations [Russian translation], Inostrannaya Literatura, Moscow (1957).
M. A. Krasnosel'skii,Positive Solutions of Operator Equations [in Russian], Fizmatgiz, Moscow (1962).
Additional information
Lvov University, Lvov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51., No. 4, pp. 562–567, April, 1999.
Rights and permissions
About this article
Cite this article
Zhernovyi, Y.V. Conditions for one-valued solvability of nonlinear stationary heat-conduction problems. Ukr Math J 51, 630–635 (1999). https://doi.org/10.1007/BF02591765
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02591765