Abstract
We obtain estimates for the sum of deviations and sum of defects to power 1/2 in terms of the Valiron defect of the derivative at zero. In particular, the Fuchs hypothesis (1958) is verified.
Similar content being viewed by others
References
R. H. Nevanlinna,Univalent Analytic Functions [Russian translation], OGIZ, Moscow (1941).
W. K. Hayman,Meromorphic Functions, Clarendon, Oxford (1964).
W. H. J. Fuchs, “A theorem of the Nevanlinna deficiencies of meromorphic functions of finite order,”Ann. Math.,68, No. 2, 203–208 (1958).
V. P. Petrenko, “Growth of meromorphic functions of finite lower order,”Izv. Akad. Nauk SSSR, Ser. Mat., No. 2, 414–454 (1969).
A. F. Grishin, “On the comparison of the defects δ p (a)”,Teor. Funkts. Funkts. Anal. Prilozhen, Issue 25, 56–66 (1976).
A. A. Gol'dberg and I. V. Ostrovskii, “Some theorems on the growth of meromorphic functions,”Zap. Mat. Otdel. Khark. Univ. Khark. Mat. Obshch., Ser. 4,27, 3–37 (1961).
N. V. Govorov, “On the Paley problem,”Funkts. Anal. Prilozhen.,3, Issue 2, 38–42 (1969).
I. I. Marchenko and A. I. Shcherba, “On the values of deviations of meromorphic functions,”Mat. Sb.,181, No. 1, 3–24 (1990).
W. H. J. Fuchs, “Topics in Nevanlinna theory,” in:Proceedings of the Naval Research Laboratory Conference on Classical Function Theory, Washington (1970), pp. 1–32.
V. P. Petrenko,Growth of Meromorphic Functions [in Russian], Kharkov University, Kharkov (1978).
M. A. Ryzhkov, “On the accuracy of an estimate of the value of deviation for a meromorphic function,”Teor. Funkts. Funkts. Anal. Prilozhen., Issue 37, 114–116 (1982).
I. V. Ostrovskii and I. V. Kazakova, “Remarks on the defects of meromorphic functions of low order,”Zap. Mekh.-Mat. Fak. Khark. Univ. Khark. Mat. Obshch., Ser.,4., 30, 70–74 (1964).
A. Baernstein, “Integral means, univalent functions and circular symmetrization,”Acta Math.,133, 139–169 (1974).
I. I. Marchenko, “On the growth of entire and meromorphic functions,”Mat. Sb.,189, No. 6, 59–84 (1998).
W. K. Hayman,Multivalent Functions, Cambridge (1958).
I. I. Marchenko, “On an analog of the second main theorem for a uniform metric,”Mat. Fiz. Anal. Geometr.,5, No. 3/4, 212–227 (1998).
Additional information
Kharkov University, Kharkov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 6, pp. 796–803, June, 1999.
Rights and permissions
About this article
Cite this article
Marchenko, I.I. On deviations and defects of meromorphic functions of finite lower order. Ukr Math J 51, 889–898 (1999). https://doi.org/10.1007/BF02591976
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02591976