Skip to main content
Log in

Dynamics of solutions of the simplest nonlinear boundary-value problems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We investigate two classes of essentially nonlinear boundary-value problems by using methods of the theory of dynamical systems and two special metrics. We prove that, for boundary-value problems of both these classes, all solutions tend (in the first metric) to upper semicontinuous functions and, under sufficiently general conditions, the asymptotic behavior of almost every solution can be described (by using the second metric) by a certain stochastic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Sharkovskii, Yu. L. Maistrenko, and E. Yu. Romanenko,Difference Equations and Their Applications, Kluwer (1993).

  2. A. N. Sharkovskii and E. Yu. Romanenko, “Ideal turbulence: Attractors of deterministic systems may lie in the space of fields”,Dop. Nats. Akad. Nauk Ukrainy, No. 10, 33–37 (1992).

    MathSciNet  Google Scholar 

  3. A. N. Sharkovskii, “Ideal turbulence in an idealized time-delayed Chua's circuit”,Int. J. Bifurcation Chaos,4 No. 2, 303–309 (1994).

    Article  MathSciNet  Google Scholar 

  4. A. N. Sharkovskii and A. G. Sivak, “Universal phenomena in solution bifurcations of some boundary-value problems”,J. Nonlin. Math. Phys.,1, No. 2, 147–157 (1994).

    Article  MathSciNet  Google Scholar 

  5. E. Yu. Romanenko and A. N. Sharkovskii, “Self-stochasticity in dynamical systems as a scenario for deterministic spatio-temporal chaos”,Chaos Nonlinear Mech., Ser. B,4, 172–181 (1995).

    Google Scholar 

  6. A. N. Sharkovskii, “Universal phenomena in some infinite-dimensional dynamical systems”,Int. J. Bifurcation Chaos,5, No. 5, 1419–1425 (1995); in:Thirty Years After Sharkovskii's Theorem: New Perspectives. Proc. of the Conf., World Scientific (1995), pp. 157–164.

    Article  MathSciNet  Google Scholar 

  7. E. Yu. Romanenko, A. N. Sharkovskii, and M. B. Vereikina, “Self-structuring and self-similarity in boundary-value problems”,Int. J. Bifurcation Chaos,5, No. 5, 1407–1418 (1995); also in:Thirty Years After Sharkovskii's Theorem: New Perspectives, Proc. of the Conf., World Scientific (1995), pp. 145–156.

    MATH  MathSciNet  Google Scholar 

  8. E. Yu. Romanenko and A. N. Sharkovskii, “From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence”,Ukr. Mat. Zh.,48, No. 12, 1604–1627 (1996).

    Article  MathSciNet  Google Scholar 

  9. E. Yu. Romanenko, A. N. Sharkovskii, and M. B. Vereikina, “Structural turbulence in boundary-value problems”, in:Control of Oscillations and Chaos, Proc. of the Int. Conf., St. Petersburg (1997), pp. 492–497.

  10. E. Yu. Romanenko, A. N. Sharkovskii, and M. B. Vereikina, “Self-stochasticity in deterministic boundary-value problems,”, in:Nonlinear Partial Differential Equations, Proc. of the Int. Conf., Donetsk (1998) (to appear).

  11. M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of one-dimensional maps”,Commun. Math. Phys.,81, 39–88 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  12. H. O. Peitgen, H. Jürgens, and D. Saupe,Chaos and Fractals: New Frontiers of Science, Springer, New York (1993).

    Google Scholar 

  13. E. Yu. Romanenko, “On chaos in continuous difference equations”,World. Sci. Ser. in Appl. Analysis,4, 617–630 (1995).

    MathSciNet  Google Scholar 

  14. E. Yu. Romanenko, “On specific features of the asymptotic behavior of difference equations with continuous time and difference-differential equations of neutral type”, in:Boundary-Value Problems for Differential Equations [in Ukrainian] Issue 1 (17) Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1998) pp. 207–213.

    Google Scholar 

  15. M. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”,J. Statist.,19, 25–52 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Feigenbaum, “The universal metric properties of nonlinear transformations”,J. Statist. Phys.,21, 669–706 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. N. Sharkovskii, “Coexistence of cycles of continuous transformation of the straight line into itself”,Ukr. Mat. Zh. 16, No. 1, 61–71 (1964) [English translation:Int. J. Bifurcation and Chao,5, No. 5, 1263–1273 (1995) andThirty Years After Sharkovskii's Theorem: New Perspectives, Proc. of the Conf., World Sci. (1995), pp. 1–11].

    MathSciNet  Google Scholar 

  18. S. F. Kolyada and A. G. Sivak, “Universal constants for one-parameter mappings”, in:Oscillation and Stability of Solutions of Difference-Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1982), pp. 53–60.

    Google Scholar 

  19. A. N. Sharkovskii and E. Yu. Romanenko, “Asymptotic properties of solutions of one class of boundary-value problems”Dop. Akad. Nauk Ukrainy, No. 3, 43–48 (1999).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 6, pp. 810–826, June, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, E.Y., Sharkovskii, A.N. Dynamics of solutions of the simplest nonlinear boundary-value problems. Ukr Math J 51, 907–925 (1999). https://doi.org/10.1007/BF02591978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591978

Keywords

Navigation