Abstract
We establish coefficient conditions of the classical type that guarantee the almost-everywhere summability of double orthogonal series by the Riesz methods of nonnegative order. We also prove certain equiconvergence theorems.
Similar content being viewed by others
References
A. N. Kolmogoroff, “Une contribution à l'étude de la convergeance des séries de Fourier,”.Fund. Math.,5, 96–97 (1924).
S. Kaczmarz, “Über die Reihen von allgemeinen Orthogonalfunkionen,”Math. Ann.,96, 148–151 (1925)
A. Zygmund, “Sur l'application de la primière moyenne arithmètique dans la thèorie des séries orthogonales,”Fund. Math.,10, 356–362 (1927).
A. Zygmund, “Sur la sommation des séries de fonctions orthogonales,”Bull. Int. Acad. Pol. Sci. Lett. (Cracovie). Sér. A No. 6, 295–308 (1927).
G. Alexits,Convergence Problems of Orthogonal Series [Russian translation], Inostr. Lit., Moscow (1963).
F. Móricz, “On the a.e. convergence of the arithmetic means of double orthogonal series,”Trans. Amer. Math. Soc.,297, 763–776 (1986).
V. A. Andrienko, “Summability of double orthogonal series by the Riesz methods,”Dokl. Akad. Nauk Ukr. SSR., No. 2, 3–5 (1989).
P. R. Agnew, “On double orthogonal series,”Proc. London Math. Soc.,33, 420–434 (1932).
Sh. P. Pandzhakidze, “On the Men'shov-Rademacher theorem for double orthogonal series,”Soobshch. Akad. Nauk Gruz. SSR,39, 277–282 (1965).
F. Móricz, “On the convergence in a restricted sense of multiple series,”.Anal. Math.,5, 135–147 (1979).
D. E. Menchoff, “Sur les séries de fonctions orthogonales. II,”Fund. Math.,8, 56–108 (1926).
S. Kaczmarz, “Über die Summierbarkeit der Orthogonalreihen,”Math. Z.,26, 99–105 (1927).
A. Zygmund,Trigonometric Series [Russian translation], Vol. 2, Mir Moscow (1965).
L. V. Zhizhiashvili,Some Problems of Multidimensional Harmonic Analysis [in Russian], Tbilisi University, Tbilisi (1983).
G. H. Hardy, “On the convergence of certain multiple series,”Proc. Cambridge Phil. Soc.,19, 86–95 (1916-1919).
V. A. Andrienko, “On the rate of approximation of orthogonal series by Riesz means,”Mat. Zametki,48, No. 5, 3–14 (1990).
Additional information
South-Ukrainian Pedagogic University, Odessa. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 7, pp. 867–880, July, 1999.
Rights and permissions
About this article
Cite this article
Andrienko, V.A. On the almost-everywhere convergence of the Riesz means of double orthogonal series. Ukr Math J 51, 969–985 (1999). https://doi.org/10.1007/BF02592034
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02592034