Abstract
We investigate the approximation of functions that are fractional-order integrals of bounded functions by algebraic polynomials.
Similar content being viewed by others
References
S. M. Nikol'skii, “On the best polynomial approximation of functions satisfying the Lipschitz condition,”Izv. Akad. Nauk SSSR, Ser. Mat.,10, 295–322 (1946).
A. F. Timan,Theory of Approximation of Functions of a Real Variable [in Russian], Fizmatgiz, Moscow (1960).
N. P. Korneichuk and A. I. Polovina, “On approximation of continuous and differentiable functions by algebraic polynomials on a segment,”Dokl. Akad. Nauk SSSR,166, No. 2, 281–283 (1966).
N. P. Korneichuk and A. I. Polovina, “On approximation of functions satisfying the Lipschitz condition by algebraic polynomials,”Mat. Zametki,9, No. 4, 441–447 (1971).
N. P. Korneichuk and A. I. Polovina, “On approximation of continuous functions by algebraic polynomials,”Ukr. Mat. Zh.,24, No. 3, 328–340 (1972).
A. A. Ligun, “On the best approximation of differentiable functions by algebraic polynomials,”Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 4, 53–60 (1980).
V. N. Temlyakov, “Approximation of functions from the classW 1∞ by algebraic polynomials”Mat. Zametki,29, No. 4, 597–602 (1981).
R. M. Trigub, “Direct theorems on approximation of smooth functions by algebraic polynomials on a segment,”Mat. Zametki,54, No. 6, 113–121 (1993).
V. K. Dzyadyk, “On the best approximation on the class of periodic function with boundeds-derivative (0<s<1),”Izv. Akad. Nauk SSSR, Ser. Mat.,17, 135–162 (1953).
V. K. Dzyadyk, “On the best approximation on the classes of periodic functions defined by kernels that are integrals of absolutely monotonic functions,”Izv. Akad. Nauk SSSR, Ser. Mat.,23, 933–950 (1959).
V. K. Dzyadyk, “On the best approximation on the classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels,”Mat. Zametki,16, No. 5, 691–701 (1974).
L. Ya. Shalashova, “Timan approximation theorem for functions with continuous fractional-order derivative,”Dokl. Akad. Nauk SSSR,188, No. 6, 1248–1249 (1969).
V. P. Motornyi, “Approximation of fractional-order integrals by algebraic polynomials I,”Ukr. Mat. Zh.,51, No. 5, 603–613 (1999).
A. Kh. Turetskii,Interpolation Theory in Problems [in Russian], Vysheishaya Shkola, Minsk (1977).
V. P. Motornyi, “Approximation of periodic functions by interpolation polynomials inL 1,”Ukr. Mat. Zh.,42, No. 6, 781–786 (1990).
I. P. Natanson,Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow (1949).
V. P. Motornyi, “Approximation of functions by algebraic polynomials in the metric ofL p ,”Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 4, 874–899 (1971).
Yu. A. Brudnyi, “Generalization of one Timan theorem,”Dokl. Akad. Nauk SSSR,148, No. 6, 1237–1240 (1963).
S. G. Samko, A. A. Kilbas, and O. I. Marichev,Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).
N. S. Bernshtein,Collection of Works [in Russian], Academy of Sciences of the USSR, Moscow (1952).
Additional information
Dnepropetrovsk University, Dnepropetrovsk. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 7, pp. 940–951, July, 1999.
Rights and permissions
About this article
Cite this article
Motornyi, V.P. Approximation of fractional-order integrals by algebraic polynomials. II. Ukr Math J 51, 1055–1068 (1999). https://doi.org/10.1007/BF02592041
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02592041