Abstract
We analyze the application of the numerical-analytic method proposed by A.M. Samoilenko in 1965 to multipoint boundary-value problems.
Similar content being viewed by others
References
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. I,”Ukr. Mat. Zh.,50, No. 1, 102–117 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. II,”Ukr. Mat. Zh.,50, No. 2, 225–243 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development.III,”Ukr. Mat. Zh.,50, No. 7, 960–979 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. IV,”Ukr. Mat. Zh.,50, No. 12, 1656–1672 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. V,”Ukr. Mat. Zh.,51, No. 5, 663–673 (1999).
A. M. Samoilenko and V. A. Ronto, “On the numerical-analytic method for solving boundary-value problems for ordinary differential equations,”Ukr. Mat. Zh.,33, No. 3, 467–475 (1981).
E. P. Trofimchuk and A. V. Kovalenko, “Samoilenko numerical-analytic method without determining equation,”Ukr. Mat. Zh.,47, No. 1, 31–36 (1995).
A. N. Ronto, “On the construction of an iteration scheme of approximate solution for one class of nonlinear boundary-value problems for ordinary differential equations,” in:Collection of Works of Students and Post-Graduates of the Kiev University. Natural Sciences [in Russian], Issue 2, Kiev University (1995), pp. 17–22.
A. N. Ronto,Numerical-Analytic Methods for the Investigation of Multipoint Boundary-Value Problems [in Russian], Candidate-Degree Thesis (Physics and Mathematics, Kiev (1997).
A. M. Samoilenko and M. I. Rontó,Numerical-Analytic Methods of Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).
A. M. Samoilenko and M. I. Rontó,Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Naukova Dumka, Kiev (1992).
M. I. Rontó and O. M. Martynyuk, “Investigation of periodic solutions of countable second-order systems,”Ukr. Mat. Zh.,44, No. 1, 83–93 (1991).
E. P. Trofimchuk, “Investigation of solution of a boundary-value problem for an impulsive system by the numerical-analytic method with improved convergence,” in:Asymptotic Methods in Problems of Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1988), pp. 152–158.
E. P. Trofimchuk, “On the improvement of estimates of convergence of the numerical-analytic method for a problem with integral conditions,” in:Analytic Methods for the Investigation of Nonlinear Differential Systems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1992), pp. 115–119.
E. P. Trofimchuk,Iteration Methods for the Investigation of Differential Equations with Singularities [in Russian], candidate-Degree Thesis (Physics and Mathematics), Kiev (1992).
M. I. Rontó, “Method of trigonometric polynomial approximations in the investigation of periodic solutions,”Dokl. A Akad. Nauk Ukr. SSR, Ser. A, No. 2, 16–19 (1984).
M. I. Rontó, “Method of polynomial approximations in the investigation of solutions of two-point boundary-value problems,”Ukr. Mat. Zh.,36, No. 4, 518–522 (1984).
M. I. Rontó, “On the numerical-analytic method for BVPs with parameters,”Publ. Univ. Miskolc. Ser. D, Natur. Sci. Math.,36, No. 2, 125–132 (1996).
M. I. Rontó, “On some existence results for parametrized boundary value problems,”Publ. Univ. Miskolc. Ser. D, Natur. Sci. Math. 37, No. 2, 95–104 (1997).
M. I. Rontó, “Numerical-analytic successive approximation method for nonlinear boundary-value problems,”Nonlinear Analysis TMA,30, No. 5, 3179–3188 (1997).
M. I. Rontó, “Numerical-analytic method in the case of degenerate matrices in boundary conditions,”Ukr. Mat. Zh.,44, No. 5, 673–681 (1992).
Kh. Ovezdurdyev,Numerical-Analytic Methods for the Investigation of Solutions of Two-Point Boundary-Value Problems [in Russian], Author's Abstract of the Candidate-Degree Thesis (Physics and Mathematics), Kiev (1985).
A. M. Samoilenko and M. I. Rontó, “Modification of the numerical-analytic method of successive approximations for boundary-value problems for ordinary differential equations,”Ukr. Mat. Zh.,42, No. 8, 1107–1116 (1990).
A. M. Samoilenko, M. I. Rontó, and V. A. Ronto, “Two-point boundary-value problems with parameters in boundary conditions,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 23–26 (1985).
A. M. Samoilenko and Le Lyong Tai, “On one method for the investigation of boundary-value problems with nonlinear boundary conditions,”Ukr. Mat. Zh. 42, No. 7, 951–957 (1990).
A. M. Samoilenko and S. V. Martynyuk, “Justification of the numerical-analytic method of successive approximations for problems with integral boundary conditions,”Ukr. Mat. Zh.,42, No. 9, 1231–1239 (1991).
A. M. Samoilenko, M. I. Rontó, and S. V. Martynyuk, “On the numerical-analytic method for problems with integral boundary conditions,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 36–47 (1991).
M. I. Rontó and V. A. Ronto, “On one method for the investigation of boundary-value problems with parameters,” in:Boundary-Value Problems in Mathematical Physics [in Russian], Naukova Dumka, Kiev (1990), pp. 3–10.
M. Kwapisz, “On boundary-value problems for difference equations,”J. Math. Anal. Appl.,151, 254–270 (1991).
M. Kwapisz, “Some remarks on an integral equation arising in applications of the numerical-analytic method of solving boundary-value problems,”Ukr. Mat. Zh.,44, No. 1, 128–132 (1992).
M. Kwapisz, “On modifications of the integral equation of Samoilenko's numerical-analytic method of solving boundary-value problems,”Math. Nachr.,57, 125–135 (1991).
M. Kwapisz, “On modifications of Samoilenko's numerical-analytic method of solving boundary-value problems for difference equations,”Appl. Math.,38, 133–144 (1993).
M. Kwapisz, “On integral equations arising in the numerical-analytic method of solving boundary-value problems for differential functional equations,” in:Proceedings of the International Conference on Differential Equations, Barcelona, Spain, August 26–31, 1991, Vol. 2, World Scientific, London (1993), pp. 671–677.
A. Augustinowicz and M. Kwapisz, “On a numerical-analytic method of solving boundary-value problems for functional differential equations of neutral type,”Math. Nachr.,145, 255–269 (1990).
N. A. Evkhuta and P. P. Zabreiko, “On the convergence of the Samoilenko method of successive approximations for finding periodic solutions,”Dokl. Akad. Nauk BSSR,29, No. 1, 15–18 (1985).
N. A. Evkhuta and P. P. Zabreiko, “On the Samoilenko method for finding periodic solutions of differential equations in a Banach space,”Ukr. Mat. Zh.,37, No. 2, 162–168 (1985).
N. A. Evkhuta and P. P. Zabreiko, “The Poincaré method and Samoilenko method for the construction of periodic solutions to ordinary differential equations,”Math. Nachr.,153, 85–99 (1991).
M. I. Rontó and I. I. Korol', “Investigation and solution of boundary-value problems with parameters by the numerical-analytic method,”Ukr. Math. Zh.,46, No. 8, 1031–1043 (1994).
M. I. Rontó and T. V. Savina, “A numerical-analytic method for three-point boundary-value problems,”Ukr. Mat. Zh.,46, No. 4, 393–403 (1994).
S. V. Martynyuk,Investigation of Solutions of Boundary-Value Problems for Systems of Nonlinear Differential Equations [in Russian], Author's Abstract of the Candidate-Degree Thesis (Physics and Mathematics), Kiev (1992).
T. V. Savina,Investigation of Solutions of Multipoint Boundary-Value Problems by the Numerical-Analytic Method [in Ukrainian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (1993).
V. N. Shovkoplyas,Periodic Solutions of Nonlinear Differential Equations with Pulse Effect [in Russian], Author's Abstract of the Candidate-Degree Thesis (Physics and Mathematics), Kiev (1979).
N. A. Perestyuk and A. N. Ronto, “On one method for the construction of successive approximations for investigation of multipoint boundary-value problems,”Ukr. Mat. Zh.,47, No. 9, 1243–1253 (1995).
N. A. Perestyuk and A. N. Ronto, “Numerical-analytic method for the equation of a nonlinear oscillator,”Publ. Univ. Miskolc. Ser. D, Natur. Sci. Math.,36, No. 2, 115–124 (1996).
A. N. Ronto, “On the boundary-value problems with linear multipoint restrictions,”Publ. Univ. Miskolc, Ser. D, Natur. Sci. Math.,36, No. 1, 81–89 (1996).
A. N. Ronto, “On application of the numerical-analytic method to linear systems,”Publ. Univ. Miskolc, Ser. D, Natur. Sci. Math.,37, 85–94 (1997).
M. I. Rontó and R. M. Tégen, “Successive approximation method for investigating three-point boundary-value problems with singular matrices,”Math. Pannonica,5/1, 15–28 (1994).
M. I. Rontó and S. I. Trofimchuk,Numerical-Analytic Method for Nonlinear Differential Equations, Preprint No. 96-01, University of Miskolc, Institute of Mathematics (1996).
M. I. Rontó, A. N. Ronto, and S. I. Trofimchuk,Numerical-Analytic Method for Differential and Difference Equations in Partially Ordered Banach Spaces and Some Applications, Preprint No. 96-02, University of Miskolc, Institute of Mathematics (1996).
E. P. Trofimchuk, “Integral operators of the method of successive periodic approximations,”Mat. Fiz. Nelin. Mekh., Issue 13(47), 31–36 (1990).
O. M. Martynyuk,Investigation of Solutions of Boundary-Value Problems for Countable Systems of Nonlinear Differential Equations [in Ukrainian], Author's Abstract of the Candidate-Degree Thesis (Physics and Mathematics), Kiev (1993).
R. M. Tégen, “On existence of solutions of some three-point BVPs,”Publ. Univ. Miskolc, Ser. D, Natur. Sci. Math.,36, No. 1, 101–109 (1995).
C. Gupta and S. I. Trofimchuk, “A sharper condition for the solvability of a three-point second-order boundary-value problems,”J. Math. Anal. Appl.,205, 586–597 (1997).
Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel',Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).
M. G. Krein and M. A. Rutman, “Linear operators under which a cone is invariant in a Banach space,”Usp. Mat. Nauk,3, Issue 1(23), 3–95 (1948).
Author information
Authors and Affiliations
Additional information
Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 7, pp. 960–971, July, 1999.
Rights and permissions
About this article
Cite this article
Rontó, M.I., Samoilenko, A.M. & Trofimchuk, S.I. The theory of the numerical-analytic method: Achievements and new trends of development. VI. Ukr Math J 51, 1079–1094 (1999). https://doi.org/10.1007/BF02592043
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02592043