Skip to main content
Log in

Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable hamiltonian systems. I

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville-Arnol’d integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytic method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d,Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. J. J. Duistermaat, “On global action-angles,”Comm. Pure Appl. Math.,33, 687–706 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  3. N. N. Nekhoroshev, “The action-angle variables and their generalizations,”Tr. Mosk. Mat. Obshch.,26, 181–198 (1972).

    MATH  Google Scholar 

  4. V. I. Arnol’d, V. V. Kozlov, and N. N. Nekhoroshev, “Mathematical aspects of classical and celestial mechanics,” in:VINITI Series on Contemporary Problems in Mathematics [in Russian], Vol. 3, Moscow (1985), pp. 1–213.

  5. R. Hurwitz,Theory of Functions [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  6. V. I. Arnol’d,Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  7. A. K. Prikarpatskii, M. M. Prytula, and I. V. Mikityuk,Elements of the Theory of Differential Geometrical Structures and Dynamical Systems [in Ukrainian], UMK VO, Kiev (1988).

    Google Scholar 

  8. G. Godbillon,Géométrie Différentielle et Mécanique Analytique, Collection Méthodes Hermann, Paris (1969).

  9. N. Ercolani and E. D. Siggia, “Painleve property and geometry,”Physica,D34, 303–346 (1989).

    MATH  MathSciNet  Google Scholar 

  10. S. Sternberg,Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, NJ (1964).

    MATH  Google Scholar 

  11. N. G. Chebotarev,Introduction to the Theory of Algebraic Functions [in Russian], Gostekhizdat, Moscow (1949).

    Google Scholar 

  12. M. Blaszak,Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin, (1998).

    MATH  Google Scholar 

  13. A. M. Samoilenko, “Asymptotic method for the investigation ofm-frequency oscillation systems,”Ukr. Mat. Zh.,50, No. 10, 1366–1387 (1998).

    Article  MATH  Google Scholar 

Download references

Authors

Additional information

Academician.

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal Vol. 51, No. 10, pp. 1379–1390, October 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, A.M., Prikarpatskii, Y.A. Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable hamiltonian systems. I. Ukr Math J 51, 1556–1568 (1999). https://doi.org/10.1007/BF02981688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981688

Keywords

Navigation