Abstract
We establish that, for a Blaschke product B(z) convergent in the unit disk, the condition - ∞ <\(\smallint _0^1 \log (1 - t)n(t,B)dt\) is sufficient for the total variation of logB to be bounded on a circle of radiusr, 0 <r < 1. For products B(z) with zeros concentrated on a single ray, this condition is also necessary. Here, n(t, B) denotes the number of zeros of the functionB (z) in a disk of radiust.
Similar content being viewed by others
References
W. K. Hayman,Meromorphic Functions [Russian translation], Mir, Moscow (1966).
O. Frostman, “Sur les produits de Blaschke,”Kungl. Fysiografiska Sällskapets Lund Förhandlingar,12, No. 15, 169–182 (1942).
E. F. Collingwood and A. J. Lohwater,The Theory of Cluster Sets [Russian translation], Mir, Moscow (1971).
C. N. Linden, “On Blaschke products diverging everywhere on the boundary of the unit disk,”Proc. Amer. Math. Soc.,55, No. 1, 62–64 (1976).
R. E. Edwards,Fourier Series. A Modern Introduction [Russian translation], Vol. 2, Mir, Moscow (1985).
R. Z. Kalynets’ and A. A. Kondratyuk, “On the regularity of growth of the modulus and argument of an entire function in the metric of Lp[0, 2π],”Ukr. Mat. Th.,50, No. 7, 889–896 (1998).
G. R. MacLane and L. A. Rubel, “On the growth of the Blaschke products,”Can. J. Math.,21, 595–600 (1969).
J. B. Garnett,Bounded Analytic Functions [Russian translation], Mir, Moscow (1984).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 11, pp. 1449–1455, November, 1999.
Rights and permissions
About this article
Cite this article
Vasyl’kiv, Y.V. On the boundedness of the total variation of the logarithm of a Blaschke product. Ukr Math J 51, 1635–1642 (1999). https://doi.org/10.1007/BF02525267
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02525267